https://vvtesh.sarahah.com/

Information Retrieval

Venkatesh Vinayakarao

Chennai Mathematical Institute

What we find changes who we become.

-Peter Morville.

Venkatesh Vinayakarao (Vv)

Acknowledgment

Some slides are borrowed from the companion website of Manning et al.’s IR book
(https://nlp.stanford.edu/IR-book/)

A good teacher can inspire hope, ignite the

imagination, and instill a love of learning.
-Brad Henry.

Agenda

e About Me
* Introduction
* Course Dynamics

* Our First IR System
* Linear Traversal

* Boolean Retrieval

e Evaluation

About Me

About Me

Teaching & Research
(IR + PA + SE)

2018
PhD (IR + PA + SE)
2013 Software Engineer
Yahoo, Microsoft
2009
Software Engineer
2001
MS (Information Tech.)
2002
Software Engineer

Year 2000
BE (Computer Science)

Introduction

Shannon’s Definition, Fisher Information, Neumann Entropy, ... x

Information is any entity or form that provides the
answer to a question of some kind or
resolves uncertainty. — Wikipedia.

c
RS,
o+

O

>
)

(@)

| -
o+
=

Role of Information

* |f only you knew

Which stock to invest in?

Which faculty to work with?

How to get into a top college?
Which course to register for?
What to study?

* How to prepare for job interviews?

* |f only you had the information, you could rule this
world!

 What happens when all the information is deprived
from you?

Solitary Confinement is Cruel

(e
i)
)

O

)
©

o

| -
)
=

Information

C
RS
)

O

)
)

o

| -
)
=

Several retrieval
systems: Lycos, Altavista,
MSN, B idu,
Yahoo!, Ask. atc.,

Google

1= Google
— Digital 1998
Libraries 30 Trillion
Library 1970’s documents
nationale de Library, in 2016
170+ Million .
France Collection Project
? Gutenberg, etc.
oyal Library of 1463

Alexandria
300 BC.

What is Information Retrieval?

c
RS,
o+

O

>
)

(@)

| -
o+
=

Information Need
Let us learn more
about IIITS

O

mmp Query=“CMI”

d;:“lIT Madras”
=——>1 Retrieval

<«—of, System g I

Results = ??

Information Retrieval (IR) is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an
information need from within large collections.

— From the Manning et al. IR Book.

Course Dynamics

Learning Objectives

* Understand and apply text retrieval techniques to
big data.

* Understand and apply text indexing techniques.
* Analyze and evaluate existing retrieval systems.

Course Website: http://vvtesh.co.in/teaching/IR-2019.html

We will use moodle for assignments.

n
=
S
©
c
>
0
(]
n
S
>S5
)
O

Resources

Christopher D. Manning
Prabhakar Raghavan
Hinrich Schitze

Introduction to

Course Text

Search Engines
Information Retrieval

in Practice

W.-BRUCE CROET __
. DONALD METZLER ™
\'\""TREVOR STROHMAN

’ J &

Reference

e

)
=
£
©
C
>
()]
(¢]
n
S
>S5
o
@)

Evaluation

Final Exam 60%
Assignments (3 * 10% each) 30%
In-Class Quiz 10%

n
=
S
©
c
>
0
(]
n
S
>S5
)
@)

Assignments

)
=
=
©
c
>
()]
(¢]
v
S
>S5
o
@)

* May (Not necessarily though) have a programming
component.

* Will test the concepts you study.
* Individual.

Exams

)
=
£
©
C
>
()]
(¢]
n
S
>S5
o
@)

* Closed Book.

Office Hours

)
=
£
©
c
>
()]
(¢]
v
| -
>S5
o
@)

* By appointment.
* Send me an email.
* Find me in Room 605.
* Keep “[IR Class]” on subject line.

A Simple Retrieval
System

Our first IR system.

Simple Retrieval Problem

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

* A collection with 5 documents having the following
contents
e d1: IIIT ALLAHABAD
e d2: IIIT DELHI
e d3: IIT GUWAHATI
e d4: IIIT KANCHIPURAM
e d5: [IIT SRICITY

* Query is
* |IIT SRI CITY

* Which document will you match and why?

The Problem

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

Query = “llIT Sri City”
—

_
Results = ??

Retrieval
System

d,:“INT Allahabad”
d,:“IIT Delhi”

Large Collection

One (bad) Approach

e First match the term IIIT.
e Filter out documents that contain this term.

* Next match the term Sri.
e Filter out documents that contain this term.

* Next match the term City.
* Filter out documents that contain this term.

Three iterations!
Quiz: Can we do better?

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

Boolean Retrieval

Match or No-Match! No ranking of results.

Simple Conjunctive Queries

Query = “Brutus and
Caesar and not Calpurnia”
—

_

Results = ??

Retrieval
System

Shakespeare’s
Works

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
o
9
o
£
s

A Term-Document Incidence
Matrix Example

Antony
Brutus
Caesar

Calpurnia

Terms

Cleopatra
mercy

worser

Documents
Antony and Cleopatra Julius Caesar The Tempest Hamlet
1 1 0 0
1 1 0 1
1 1 0 1
0 1 0 0
1 0 0 0
1 0 1 1
1 0 1 1

“Brutus and Caesar and not Calpurnia”

Othello

Macbeth

0
1
0
0
1
0

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

Revisiting Boolean Algebra

What is the best way to get to the answer?

The Answer

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

“Brutus and Caesar and not Calpurnia”

Document 1 and 4 satisfy our query.

Disadvantages of term-document
Matrix

* When a new document is added to collection:
* New columns get added.

* If the collection is very large (say Millions of

documents),
* Each document has far fewer words from the dictionary.

* So, the matrix is sparse.

Can we do better?

Instead of handling both 1s and Os, can we only have the 1s?

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

Revisiting Data Structures

Arrays Vs. Linked Lists

The Problem

* An n-Dimensional Vector can be represented as

e an array of n elements.
 Example: (1,1,1)is int[] A={1,1,1}; in Java.
* So, a large vector {1,1,0,0,0,0,0,0,0,.... 10K

elements} is
* an array with 10K elements where only first two
elements are 1s.

Is there a better way to represent this data?

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

The Answer

« {1,1,0,0,0,0,0,0,0,.... 10K elements} is
heaq/v 1 2 A Linked List!

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

« {0,0,1,0,1,0,0,.....10K elements} is

heaﬂ/v R A Linked List!

Representing term-document
Data

Documents

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
2] Caesar 1 1 0 1 1 1
g Calpurnia 0 1 0 0 0 0
|q_) Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Brutgl/'

H
\ 4
N
I

Linked List Idea in
Practice

Tokenization

e Task

* Chop documents into pieces.
* Throw away characters such as
punctuations.

 Remaining words are called tokens.

* Example

* Document 1

* | did enact Julius Caesar. | was killed i’ the Capitol;
Brutus killed me.

* Document 2

e So let it be with Caesar. The noble Brutus hath told
you Caesar was ambitious

caesar
I

was
killed

i

the
capitol
brutus
killed
me

SO

let

it

be

with
caesar
the
noble
brutus
hath

told

you
caesar
was
ambitious

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
o
9
o
£
s

=
Q
Term docID Term doclD 2
I 1 ambitious 2 <
S O rt did 1 be 2 =
enact 1 ' brutus 1 Q
julius 1 brutus 2 %
caesar 1 capitol 1 o
I 1 caesar 1 Q
was 1 caesar 2 g—
Killed 1 caesar 2 7
i 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 | 1
killed 1 ! 1
me 1) 1
SO 2 it 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 SO 2
brutus 2 the 1
hath 2 the 2
you 5 you 2
caesar 2 was 1
was
ambitious 2

nverted Index: Dictionary &
Postings

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

Term. docID dictionary
ambitious 2 term doc. freq. — postings lists
. be 2 —
* Multiple term orutus 1 ambitious [1] ~ —
brut_us 2 be | 1 — i
entries in a single e] brue] 7 o %ﬁ
caesar 2 capito — 1]
document are cassar f e L O]-[2]
| - Mo |
merged. enact 1 did | 1 - |1
hath 1 » enact | 1 | — |1
o ! 1 hath | 1 —
o
Split into | 1 — .
Dictionary and 3 : e -
e N e E
. iile |
POStlngS killed 1 julivs | 1 | — 1]
let 2 killed | 1 | — |1
me 1 A |
noble 2 let | 1 -
SO 2 me | 1 ‘ — 1]
the 1 noble | 1 ‘ — 2]
fold : 0] 1 - [2]
you 2 the | 2 - 1=
was 1 told | 1 | — |2
was 2 —
with 2 you — |2
was — i 35
with | 1] — |2

Query Processing with
Inverted Index

Boolean queries: Exact match

* The Boolean retrieval model is being able to ask a

qguery that is a boolean expression:
— Boolean queries are queries using AND, OR and NOT to
join query terms
* Views each document as a set of words
* |s precise: document matches condition or not.

— Perhaps the simplest model to build an IR system.

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
o
9
o
£
s

Query processing: AND

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
o
9
o
£
s

* Consider processing the query:
Brutus AND Caesar
* Locate Brutus in the Dictionary;
* Retrieve its postings.
* Locate Caesar in the Dictionary;

* Retrieve its postings.
* “Merge” the two postings (intersect the document sets):

12 3P 5> 8pP13 > 34 | Caesar

« 2 {4 1 8 1> 16 [32 [+ 64 1 128 | Brutus
4 21

Common Interview Question

* https://www.geeksforgeeks.org/intersection-of-
two-sorted-linked-lists/

=
(O}
o+
(%]
>
(Vp)
©
>
()}
=
)
(¢}
o
Q
o
£
(Vp)]

(;CC k.‘il‘()r(;ﬂc](5 Custom Search “ I

A computer science portal for geeks

tHa Algo ¥ DSY Languages ¥ Interview ¥ Students ¥ GATE ¥ CS Subjects ¥ Quizzes ¥

Geeks Classes g
Intersection of two Sorted Linked Lists %
Given two lists sorted in increasing order, create and return a new list representing the

Sorting Terminology

intersection of the two lists. The new list should be made with its own memory — the original
Stability in sorting algorithms lists should not be changed.
lirgn{;eri(tiﬁmgplexities el s For example, let the first linked list be 1->2->3->4->6 and second linked list be 2->4->6->8, then

your function should create and return a third list as 2-=4-=6.

Evtarnzl SArting

https://www.geeksforgeeks.org/intersection-of-two-sorted-linked-lists/

The Merge

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

* Walk through the two postings simultaneously
* Clue: Use two pointers

2 >4 816 32 ~ 64 —~ 128 | | Brutus
12 +3~+5>8> 13+ 21> 34 | Caesar

If the list lengths are x and y, the merge takes O(x+y)

operations.
Crucial: postings sorted by docID.

The Big Picture

* Content Processing
e Build Term Document Matrix or Build Inverted Index

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

* Query Handling
e Boolean AND or Intersect the Posting Lists (called
merging process)

[
Query = “IlIT Sri City” d,:“lIT Allahabad”
— -
Retrieval d,:“IIIT Delhi”
, System
Results = ?? _

Large Collection

The Merge

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

* Walk through the two postings simultaneously
* Clue: Use two pointers

2 >4 816 32 ~ 64 —~ 128 | | Brutus
1 2 +>3+>5~+8> 13+ 21 » 34 | Caesar

If the list lengths are x and y, the merge takes O(x+y)

operations.
Crucial: postings sorted by doclD.

Can we do better?

Inspired from multiple index idea of DBMS

Skip Pointers

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

Brutus—H2 4 8 16 9 H23%28+43

Caesar — 17235 8p41m51+60M 71

Phrasal Queries

e What if we do not want to match “IlIT Delhi”?

| |

4)

Query = “llIT Sri City”

' Retrieval

System

Inverted Index
_

Results = ??

A J

One (bad) Approach

* Index all biwords

* Friends, Romans, Countrymen =2 Friends Romans,
Romans Countrymen

* How do you match the query llIT Sri City, Chittoor?
 “lIT Sri” AND “Sri City” AND “City Chittoor” must exist.

* The Problem: “HIT” AND “Sri City” AND “Chittoor”
sounds like a much better query!

* Natural Language Processing techniques can help in
query formulation.

A Better Approach

e Store Positional Information

<term, number of docs containing term;
docl: positionl, position2 ...;

doc2: positionl, position2 ...;

etc.>

Extended Boolean Model with

Positional Index

to, 99342?
(1,6: (7,18,33, 72, 86, 231);
2, 5: (1,17, 74, 222, 255);
,5 (8, 16, 190, 429, 433);
5,2: (363, 367);
7,3 (13,23,191); ...}
be, 178239:
(1,2: (17, 25);

1,2
4,5: (17,191, 291, 430, 434);
5,3: (14,19, 101); ...)

“to” appears six times in
d1 at positions 7, 18,

to” appears 993K times
overall.

Which document is likely to contain “to be”?

Proximity Search

* |IIT /3 Chittoor
* /k means “within k words of (on either side)”

* Merging postings is expensive
* Index well-known phrases such as “Taj Mahal”

Combination Schemes

* biword index and positional index ideas can be
combined.

e Use biword index or common phrases (such as Taj
Mahal).

* Avoids merging postings lists.

e Use positional index for other phrases (such as IlIT
Chittoor).

The Big Picture

Query = “IlIT Sri City”
—

_
Results = ??

Retrietve

Collection

_

~

d,:“llIT Allahabad”
d,:“llIT Delhi”

J

Large Collection

o]0
c
x
[}
©
c

o]0
c
x
[}
©
c

The Big Picture

I |
Documents JJ

Indexing

Query = “IlIT Sri City” 4)
' Retrieval
s Inverted Index
| ystem
Results = ?? _)

