https://vvtesh.sarahah.com/

Information Retrieval

Venkatesh Vinayakarao

Term: Aug – Sep, 2019 Chennai Mathematical Institute

I still think Google uses PageRank! – A Random User on the Web

Venkatesh Vinayakarao (Vv)

Crawlers

Basic crawl architecture

Robots.txt

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine Disallow:

Challenges

- We do not have a list of all URLs
- Link Extraction
- Avoiding Spider Traps
 - Dynamically create and respond to new URLs from every page within the same domain.
- Duplicate Sites
- Politeness
 - Access only once every n seconds.
- Storing page-related information (like popularity)

Apache Nutch

Downloads

Community -

Documentation -

Development -

dighly extensible, highly scalable Web crawler

Nutch is a well matured, production ready Web crawler. Nutch 1.x enables fine grained configuration, relying on Apache Hadoop[™] data structures, which are great for batch processing.

Link Analysis

Popularity as Search Parameter

Which pages are popular?

The Web as a Graph

A Random Surfer Model

• A random surfer may start from any node with 1/3 probability

 Can you represent this graph using Adjacency Matrix?

A Random Surfer

• May start from any node with 1/3 probability

 Can you represent this graph using Adjacency Matrix?

$$\mathbf{A} = \begin{bmatrix} 0 \ 1 \ 0 \\ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \end{bmatrix}$$

A Random Surfer

• May start from any node with 1/3 probability

• May also teleport to any node with α probability

$$\mathbf{A} = \begin{bmatrix} 0 \ 1 \ 0 \\ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \end{bmatrix}$$

How can you compute the transition probabilities?

Transition Probabilities

• We can convert the Adjacency Matrix (A) to Transition Probability Matrix (P)

- If the random surfer is at 1,
 - and he did not teleport
 - Probability = 1α
 - and he teleports
 - he may reach state3 with probability $\alpha/3$
 - and may reach state 2 with probability $\alpha/3$
- Transition Probability from 1 is $(\alpha/3, (1 \alpha) + \alpha/3, \alpha/3)$

Quiz

• If the teleportation probability, $\alpha = 0.5$, Calculate the transition probability matrix for this network.

Quiz

• If the teleportation probability, $\alpha = 0.5$, Calculate the transition probability matrix (P) for this network.

Which page is more popular?

• If a random surfer at 1 can reach (1,2,3) with probabilities (1/6, 2/3, 1/6), where will he end up in the next time slot if choses to continue his walk?

Which page is more popular?

• If a random surfer at 1 can reach (1,2,3) with probabilities (1/6, 2/3, 1/6), where will he end up in the next time slot if choses to continue his walk?

Steady State Probability

- If the random surfer keeps walking, the probabilities tend to converge!
 - Since we have an Ergodic Markov Chain!
 - A markov chain is ergodic if every state is reachable from every other state (not necessarily in a single jump).
- In our case, we should get (5/18, 8/18, 5/18)
- So, page 2 gets the highest rank.

Hubs and Authorities

Topic specific page rank can be useful!

Query: I wish to learn about leukemia

1. Nature.co	m - Leukemia News	
nature	London About Blog Latest news and research from Nature.com on the topic of Leuk Frequency about 4 posts per week. Blog nature com/subjects/leukaemia Facebook fans 907,612. Twitter followers 1,574,259.	aemia
View Latest Post	5 *	
Subscribe newsle	tter	
Enter email	Continue OR G Continue with Google	
2. St. Baldri	ck's Foundation - Childhood Cancer Research Foundatio	n
	Global	

Hub Page <u>https://blog.feedspot.com/leukemia_blogs/</u> Authority Page www.cancer.gov

Hubs and Authorities Score

• Given a query, assign a hub score and an authority score for each page.

Hub Score (say, h(v) = 0.002) Authority Score (say, a(v) = 0.17)

Hub Page

- A good hub page points to many good authorities
- A good authority page is pointed-to by many hubs

HITS Algorithm

- For all web pages, initialize hub score (h(v)) and authority score (a(v)) to 1. Here, v is a web page.
- $v \rightarrow y$ denotes a link from v to y.
- Iteratively update h(v) and a(v). $h(v) = \sum_{v \to y} a(y)$ $a(v) = \sum_{v \to y} h(y)$ $\vec{h} = A \vec{a}$ $\vec{a} = AT \vec{h}$ What happens on repeated updates? Use your mathematical hat!

HITS Algorithm

Hyperlink Induced Topic Search

HITS Example

Thank You