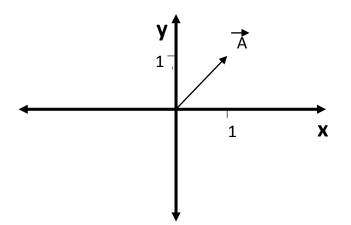

# Information Retrieval

#### Venkatesh Vinayakarao

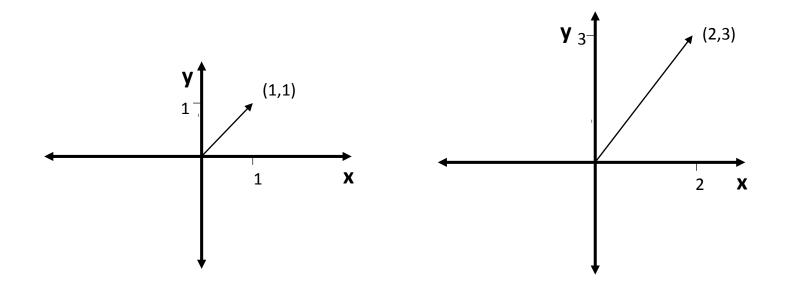
Term: Aug – Sep, 2019 Chennai Mathematical Institute



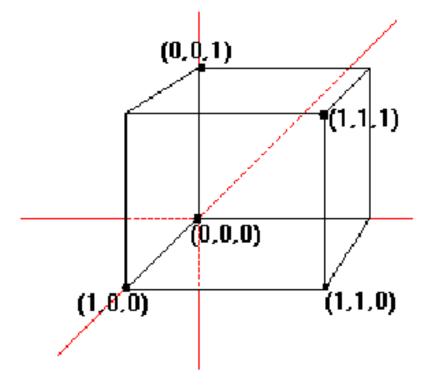

- Turney and Pantel, JAIR 2010.

#### A Better Approach

Revisiting Linear Algebra


#### Vectors

• Geometric entity which has magnitude and direction

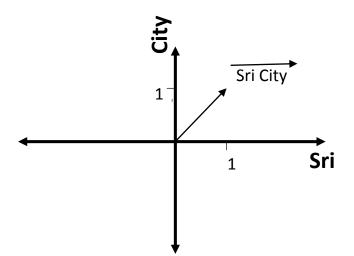



• If (x,y) is our vector of interest, this figure shows  $\vec{A}$  vector = (1,1).

# How is (2,3) Different?

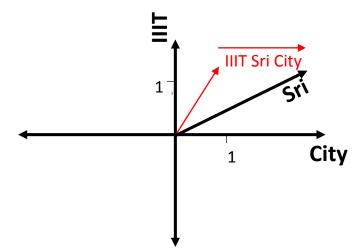


# What is (1,1,1) ?



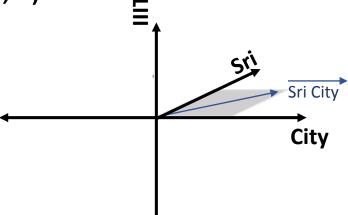

#### Remember!

A number is just a mathematical object. We give meaning to it!


#### Sentences are Vectors

• "Sri City" as a vector




#### Sentences are Vectors

• "IIIT Sri City" is a 3-dimensional vector



#### Sentences are Vectors

 On this 3D space, "Sri City" vector will lie on the x (City) and z (Sri) plane. If (x,y,z) denotes the vector, "Sri City" is (1,0,1).



# More Linear Algebra...

- So, we learned to represent English phrases on the vector space.
- We need something more!

**Revisiting Matrices** 

# Natural Language Phrases as Vectors

Let query q = "IIIT Sri City".

Let document,  $d_1 = "IIIT Sri City"$  and  $d_2 = "IIIT Delhi"$ .

|                | IIIT | Sri | City | Delhi |
|----------------|------|-----|------|-------|
| q              | 1    | 1   | 1    | 0     |
| $d_1$          | 1    | 1   | 1    | 0     |
| d <sub>2</sub> | 1    | 0   | 0    | 1     |

q = (1,1,1,0),  $d_1$ = (1,1,1,0) and  $d_2$  = (1,0,0,1)

• Considering the following vectors:

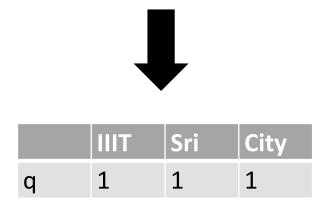
|                | IIIT | Sri | City | Delhi |
|----------------|------|-----|------|-------|
| q              | 1    | 1   | 1    | 0     |
| $d_1$          | 1    | 1   | 1    | 0     |
| d <sub>2</sub> | 1    | 0   | 0    | 1     |

- What is the Natural Language (NL) equivalent of (0,1,1,0) ?
- What is the NL equivalent of (1,0,0,1)?
- What is the vector for Delhi?
- What is the NL equivalent of q?

## Which of the Following are Sets?

- {1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 10, 11, 12, 13}
- {A, B, C, D, E, F, G, H, I, I, J, K, L, M, N, O}
- {apple, banana, orange, apple, banana, orange}




#### Bag

- {1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 10, 11, 12, 13}
- {A, B, C, D, E, F, G, H, I, I, J, K, L, M, N, O}
- {apple, banana, orange, apple, banana, orange}

#### Set of Words Representation

- "IIIT Sri City"
- "IIIT Sri City, Sri City"  $\rightarrow$  {IIIT, Sri, City}

 $\rightarrow$  {IIIT, Sri, City}



Leads to same term-document matrix

## Set Similarity

• Similarity between two sets is easy

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Jaccard Similarity

- What is the Jaccard similarity between
  - {1,2,3} and {4,5,6}?
  - {1,2,3} and {1,2,4}?
  - {1,2,3} and {1,2,3}?

- What is the Jaccard similarity between
  - {1,2,3} and {4,5,6} = 0
  - {1,2,3} and {1,2,4} =  $\frac{|\{1,2\}|}{|\{1,2,3,4\}|}$  = 0.5
  - {1,2,3} and {1,2,3} = 1

- What is the Jaccard similarity between
  - "IIIT is Great" and "IIITD is Great"?

- What is the Jaccard similarity between
  - "IIIT is Great" and "IIITD is Great"?
- Same as Jaccard Similarity between {IIIT, is, Great} and {IIITD, is, Great}. Equals 0.5.


#### Ranked Retrieval

In the **Ranked Retrieval** model, we may want to model documents as **bag** of words.

# **Bag of Words Representation**

- "IIIT Sri City"

#### $\rightarrow$ {IIIT, Sri, City} • "IIIT Sri City, Sri City" $\rightarrow$ [IIIT, Sri, Sri, City, City]



IIIT Sri City, Sri City **IIIT Sri City** IIIT City Sri Sri Citv 1 1 1 1 2 2 q q

Leads to different term-document matrix

#### Set of Words $\rightarrow$ Bag of Words

# Information Retrieval

#### Venkatesh Vinayakarao

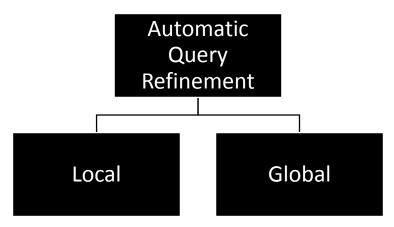
Term: Aug – Dec, 2018 Indian Institute of Information Technology, Sri City



Searchers may not have a well-developed idea of what information they are searching for, they may not be able to express their conceptual idea of what information they want into a suitable query and they may not have a good idea of what information is available for retrieval. – **Ruthven and Lalmas, The Knowledge Engineering Review, 2003.** 

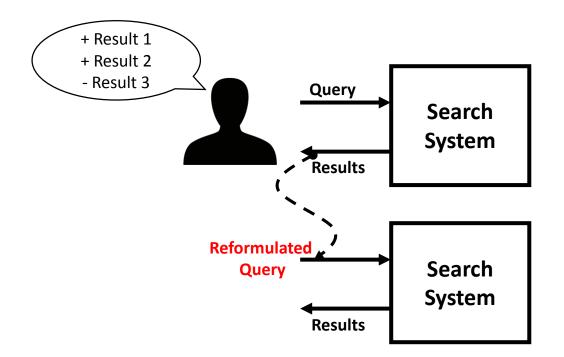
Venkatesh Vinayakarao (Vv)

# Relevance Feedback


#### How to improve relevance?

Relevance Feedback And Query Expansion

# The Problem of Synonymy


- What result do you expect for a query, "plane"?
- What if plane appears in this query, "plane from Delhi to Goa"?
- So many synonyms which will work for web search...
  - Flight
  - Aircraft
  - Airplane
  - Aeroplane
  - By Air
  - Fly
  - Flgt
  - Arcrft

# How to ensure good results?



<u>Use</u> the **query** or the **results** for reformulating the query We will study: *Relevance Feedback Pseudorelevance Indirect Relevance Feedback*  Do not use the query or the results for reformulating the query. Eg: Use Thesaurus. Do Spelling Correction.

#### Relevance Feedback



# An Example

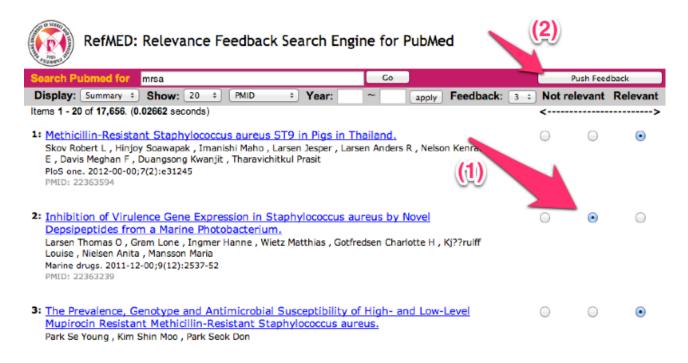



Image source: https://sites.google.com/site/postechdm/research

## Interesting Characteristics

- Indexed content is unknown to the user.
- "Information Need" changes after looking at the results.
  - User visits youtube to listen to a specific set of songs.
  - After the first song, he changes his mind and listens to something else!

#### A Recap of Vector Space Models

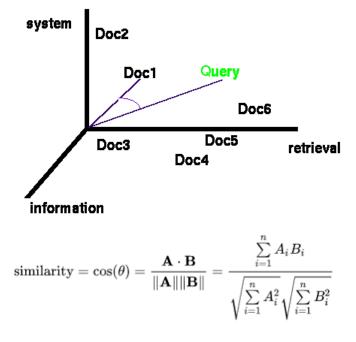



Image Source: https://fox.cs.vt.edu/talks/1995/KY95/

# Rocchio Algorithm for Relevance Feedback

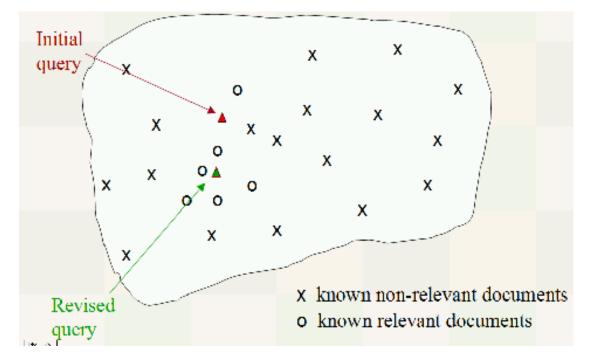



Image Source: https://nlp.stanford.edu/IR-book/

#### Moving the Centroid!

Modify the query (and therefore, the query vector from q0 to qm):

$$\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \frac{1}{|D_{r}|} \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_{j} \in D_{nr}} \vec{d}_{j}$$

 $D_r$  = Set of known relevant documents  $D_{nr}$  = Set of known nonrelevant documents  $q_o$  = Initial query vector  $q_m$  = Modified query vector

# Rocchio relevance feedback -Example

- Given:
  - Initial query = "cheap CDs cheap DVDs extremely cheap CDs".
  - d<sub>1</sub> = "CDs cheap software cheap CDs" is judged as relevant.
  - d<sub>2 =</sub> "cheap thrills DVDs" is judged as nonrelevant
- What would the revised query vector be after relevance feedback?

Let us solve this together

Assume that we are using direct term frequency (with no scaling and no document frequency). There is no need to length-normalize vectors. Assume  $\alpha = 1$ ,  $\beta = 0.75$ ,  $\gamma = 0.25$ .

# Representing Initial Query in Vector Space

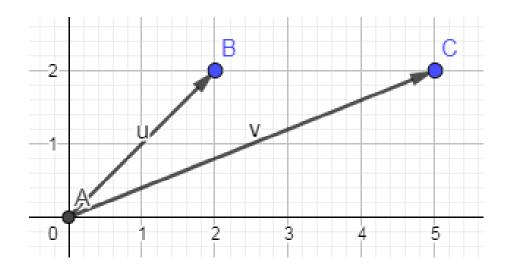
Initial query = "cheap CDs cheap DVDs extremely cheap CDs".

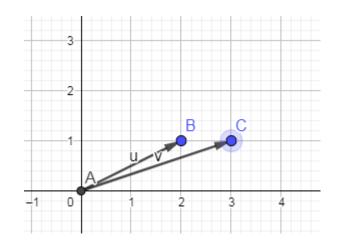
|                | cheap | CDs | DVDs | extremely | software | thrills |
|----------------|-------|-----|------|-----------|----------|---------|
| q <sub>0</sub> | 3     | 2   | 1    | 1         | 0        | 0       |

Quiz: Can you complete the following table?

q<sub>0</sub> = "cheap CDs cheap DVDs extremely cheap CDs".
d<sub>1</sub> = "CDs cheap software cheap CDs".
d<sub>2</sub> = "cheap thrills DVDs".

|                | cheap | CDs | DVDs | extremely | software | thrills |
|----------------|-------|-----|------|-----------|----------|---------|
| q <sub>0</sub> | 3     | 2   | 1    | 1         | 0        | 0       |
| d1             |       |     |      |           |          |         |
| d <sub>2</sub> |       |     |      |           |          |         |


Quiz: Can you complete the following table?


 $q_0$  = "cheap CDs cheap DVDs extremely cheap CDs".  $d_1$  = "CDs cheap software cheap CDs".  $d_2$  = "cheap thrills DVDs".

|                       | cheap | CDs | DVDs | extremely | software | thrills |
|-----------------------|-------|-----|------|-----------|----------|---------|
| <b>q</b> <sub>0</sub> | 3     | 2   | 1    | 1         | 0        | 0       |
| d1                    | 2     | 2   | 0    | 0         | 1        | 0       |
| d <sub>2</sub>        | 1     | 0   | 1    | 0         | 0        | 1       |

## **Moving Vectors**

• Move (2,2) to (5,2) by adding 3 to x.





### Quiz: How to calculate the modified query vector, q<sub>m</sub>?

d<sub>1</sub> is judged as **relevant**. d<sub>2</sub> is judged as **non-relevant**. Assume  $\alpha = 1$ ,  $\beta = 0.75$ ,  $\gamma = 0.25$ .

|                | cheap | CDs | DVDs | extremely | software | thrills |
|----------------|-------|-----|------|-----------|----------|---------|
| q <sub>0</sub> | 3     | 2   | 1    | 1         | 0        | 0       |
| d <sub>1</sub> | 2     | 2   | 0    | 0         | 1        | 0       |
| d <sub>2</sub> | 1     | 0   | 1    | 0         | 0        | 1       |



$$\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j$$

### Quiz: How to calculate the modified query vector, q<sub>m</sub>?

 $d_1$  is judged as relevant.  $d_2$  is judged as nonrelevant. Assume  $\alpha = 1$ ,  $\beta = 0.75$ ,  $\gamma = 0.25$ .

|                       | cheap | CDs                           | DVDs                 | extremely                           | software | thrills  | Negative<br>weight does |
|-----------------------|-------|-------------------------------|----------------------|-------------------------------------|----------|----------|-------------------------|
| <b>q</b> <sub>0</sub> | 3     | 2                             | 1                    | 1                                   | 0        | 0        | not make                |
| d <sub>1</sub>        | 2     | 2                             | 0                    | 0                                   | 1        | 0        | sense. So, leave        |
| d <sub>2</sub>        | 1     | 0                             | 1                    | 0                                   | 0        | 1        | them as zero.           |
|                       |       | $\mathbf{q}_{m} = \mathbf{q}$ | <sub>0</sub> + 0.75* | d <sub>1</sub> -0.25*d <sub>2</sub> |          | <b>F</b> | · > /                   |
| <b>q</b> <sub>m</sub> | 4.25  | 3.5                           | 0.75                 | 1                                   | 0.75     | 0        |                         |

$$ec{q}_m = lpha ec{q}_0 + eta rac{1}{|D_r|} \sum_{ec{d}_j \in D_r} ec{d}_j - \gamma rac{1}{|D_{nr}|} \sum_{ec{d}_j \in D_{nr}} ec{d}_j$$

# Pseudo (Blind) Relevance Feedback

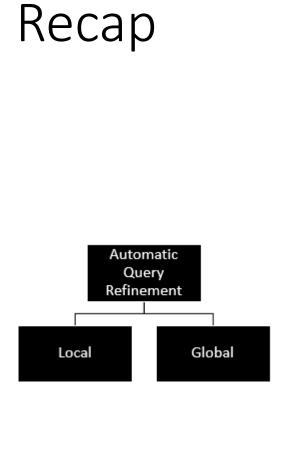
- No User Judgment.
- Assume that the top-k ranked documents are relevant.

Initial query = "cheap CDs cheap DVDs extremely cheap CDs".

 $d_{1=}$  "CDs cheap software cheap CDs".

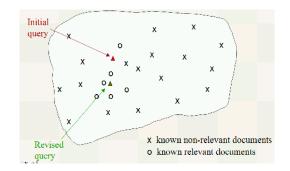
d<sub>2 =</sub> "cheap thrills DVDs".

What would the revised query vector be after pseudo relevance feedback if top-1 document is considered as relevant?


Assume that we are using direct term frequency (with no scaling and no document frequency). There is no need to length-normalize vectors. Assume  $\alpha = 1$ ,  $\beta = 0.75$ ,  $\gamma = 0.25$ .

• May lead to <u>query drift</u>.

# Indirect (Implicit) Relevance Feedback


- No asking for judgments from users.
- No automatic feedback such as assuming top-k documents as relevant.

**Clickstream Mining** 



Dealing with Local Query Refinement

Relevance Feedback



|                | cheap                                                                                                                                                                                                                                                                                                   | CDs   | DVDs  | extremely | software | thrills |                                     |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------|----------|---------|-------------------------------------|--|--|
| q <sub>0</sub> | 3                                                                                                                                                                                                                                                                                                       | 2     | 1     | 1         | 0        | 0       |                                     |  |  |
| d1             | 2                                                                                                                                                                                                                                                                                                       | 2     | 0     | 0         | 1        | 0       | Negative weight                     |  |  |
| d <sub>2</sub> | 1                                                                                                                                                                                                                                                                                                       | 0     | 1     | 0         | 0        | 1       | does not make<br>I sense. So, leave |  |  |
|                | $q_m = q_0 + 0.75^* d_1 - 0.25^* d_2$ sense. So, leave them as zero.                                                                                                                                                                                                                                    |       |       |           |          |         |                                     |  |  |
| q <sub>m</sub> | 4.25                                                                                                                                                                                                                                                                                                    | 3.5   | 0.75  | 1         | 0.75     | 0       | 1                                   |  |  |
|                | $q_{m} = 4.25  3.5  0.75  1  0.75  0$ $\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \frac{1}{ D_{r} } \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{ D_{mr} } \sum_{\vec{d}_{j} \in D_{mr}} \vec{d}_{j}$ $PseUdO \left(Blind\right) Relevance Feedback is relevant.$ Assume top-k is relevant. |       |       |           |          |         |                                     |  |  |
| Ind            | irect                                                                                                                                                                                                                                                                                                   | t (Im | nlici | 41 -      |          |         | Feedback<br>ery logs, etc.          |  |  |

# Global (User/Result-Independent) Query Refinement

- Automatic Thesaurus Generation
  - Fast = rapid
  - Tall = height?
  - Sound = noise?
  - Restaurant = Hotel = Motel?
- How to handle domain specific phrases?
- Slangs!
- ..

How to automate the thesaurus generation?

#### MAINFRAMES

Mainframes are primarily referred to large computers with rapid, advanced processing capabilities that can execute and perform tasks equivalent to many Personal Computers (PCs) machines networked together. It is characterized with high quantity Random Access Memory (RAM), very large secondary storage devices, and high-speed processors to cater for the needs of the computers under its service.

Consisting of advanced components, mainframes have the capability of

Source: https://web.stanford.edu/~jurafsky

#### MAINFRAMES

Mainframes usually are referred those computers with fast, advanced processing capabilities that could perform by itself tasks that may require a lot of Personal Computers (PC) Machines. Usually mainframes would have lots of RAMs, very large secondary storage devices, and very fast processors to cater for the needs of those computers under its service.

Due to the advanced components mainframes have, these computers

- Term-Document Matrix
  - How often does individual terms appear in a document?
- Term-Term Matrix
  - How often terms co-occur?

|          | Book1 | Book2 | Book3 | Book4 |
|----------|-------|-------|-------|-------|
| cricket  | 400   | 10    | 355   | 3     |
| football | 5     | 5     | 4     | 4     |
| hockey   | 9     | 330   | 10    | 200   |
| tennis   | 2     | 6     | 12    | 4     |

#### Quiz: Which books are similar?

 Two documents are similar if the document vectors are similar.

|          | Book1 | Book2 | Book3 | Book4 |
|----------|-------|-------|-------|-------|
| cricket  | 400   | 10    | 355   | 3     |
| football | 5     | 5     | 4     | 4     |
| hockey   | 9     | 330   | 10    | 200   |
| tennis   | 2     | 6     | 12    | 4     |
|          |       |       |       |       |

Book1 and Book3 seem to be on cricket. Book2 and Book4 are about hockey.

• Two terms are similar if the term vectors are similar.

|          | Book1 | Book2 | Book3 | Book4 |
|----------|-------|-------|-------|-------|
| boundary | 400   | 310   | 355   | 389   |
| four     | 515   | 225   | 390   | 400   |
| movie    | 9     | 4     | 8     | 1     |
| film     | 2     | 6     | 9     | 2     |

Remember, context is important!

### Magic with Matrices

### Transpose

• If A is as given below, what is A<sup>T</sup>?

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

- Assume a Boolean term-document matrix A.
- What does AA<sup>T</sup> mean?

• Usually, weighted length-normalized tf in a sliding window is used to count co-occurrence.

# Thank You