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Big Data is Ubiquitous

— ©coo

setvp | @x




Big Data Landscape
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To make sense out of the data...

How to tame complexity?

Answer: Design effective models!



A Simple Model

Question: What is the risk
(high or low) if age is below

Data Set 252
Age Car Type Risk
23 Family High Decision Tree
17 [
Sports H!gh Age 55
43 Sports High
68 Family Low
32 Truck Low Car Type {in) {sports}
20 Family High High
High Low

Venkatesh Vinayakarao 6




Agenda

* Case Study 1: How to make decisions based
on data?

* Bayesian Data Analysis

* Case Study 2: How to effectively retrieve
relevant documents?

 Vector Space Models
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The Case of Coin Flips

General Assumption: If a coin is fairl Heads
(H) and Tails (T) are equally likely. But, coin
need not be fair ®

Experiment with Coin - 1 Experiment with Coin - 2
HHHTTTHTHT HHHHHHHHHT

Coin-1 more likely to be fair when compared to coin-2.
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Our Beliefs

* Can we find a structured way to determine
coin's nature?

Data None H T H T
L N Observed

] YA Fair Skewed Fair Skewed Fair
Coin-1

T\\ Data None H H H H
4 y Observed
y

XAITAN Fair Skewed More Even Even Even
Coin-2 Skewed More.. More-

J h v ”
Prior Belief

Belief Updates
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Priors

* Priors can be strong or weak

o ——— — — — et

Ve N\
:’ Weak Prior |
| A few observations |
i New Coin ‘ sufficient to change our |
| belief significantly. |
N /
S T N

Strong Prior

Coin is lab tested for 1 Million Tosses.
50% H, 50% T observed.

[ |
| I
| I
| I
| I
| . .
| % One more observation will |
|
| I
| I
| I
( |

@ ‘ not change our belief
significantly.
\ /

e e e e e e s — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — "
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HyperParameter

* Prior probability (of Heads) could be
anything:
* 0.5 2 Fair Coin
« 0.25 > Skewed towards Tails
« 0.75 > Skewed towards Heads
* 1 > Head is guaranteed!
* O > Both sides are Tails.

We use 6 as a HyperParameter to visualize
what happens for different values.
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World of Distributions

Discrete Distribution of Prior. Since I
typically perceive coins as fair, Prior belief
peaks at 0.5.

Prior

B,
00 04 0B

T T T T T
02 04 0.6 0.8 1.0

[}
—
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Another Possibility

I may also choose to be unbiased! i.e., © may
take any value equally likely.

Prior

p(0)

I I I I I |

0.0 0.2 04 0 0.6 0.8 1.0

A Continuous Uniform Distribution!
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Observations

Let's flip the coin (N) 5 times. We observe (z)
3 Heads.

| Likelihood
{1 Data: z=3,N=5

p(D])

0.00 0.02

0.0 0.2 04 0.6 0.8 1.0
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Impact of Data

Belief is influenced by Observations. Buf,
note that:

Belief # observation

Bayes' Rule

Pr(D | 6) Pr(0)

Pr(0 | D) = Pr(D)
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Numerator is easy

* p(8) was uniform. So, nothing to calculate.
 How to calculate p(D|6)?

0%(1 — 0)"*

If D observed is HHHTT and 0 is 0.5,
We have:
p(D|B) = (0.5)3(1-0.5)573

Jacob Bernoulli
1655 - 1705. Remember, two things: 1)we are interested in the

distribution 2) Order of H,T does not matter.
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Painful Denominator

 Recall, for discrete distributions:

P(D|0) P(6)

POID) = > P(D|6;) P(6:)

* And, fof* continuous distributions:

P(D|9) P(6)

PO\D) = T5(D16) P6) a0
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Bayesian Update

Prior
> |
a -
0.0 0.2 04 o 0.6 08 1.0
Likelihood
= 1 Data:z=3N=5 -
5
-  a— E ——
0.0 02 04 5 0.6 0.8 1.0
Posterior
E B -~ ™
S - .
a T .
0.0 0.2 04 o 0.6 08 1.0
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A Simpler Way

Form, Functions and Distributions

Normal (or Gaussian) Poisson
tof— L ML L B I LI LI L 0.40—
i p=0, 0?=gz,—/ G'35'.-T o A=1
iy oo, o250 —1 0.30 | * A=4 |
[i=-2, 0= g5, =—— | o A=10
=, 0t - 1 ! ] ) . ] 90.25- I|I i
% : %0200 |
S asf- - i — T “ 0.5} :f\
2 _ L o.10f / H'., \
oz 1 o |
g _——""-. :\""*___ GIOE_J
—slll-qll—zl—zll—lll ' I1I|Iz II: I.qll =5 G‘UDIU 5 10 15 20
X k
1 z—p)?
flz,p, o) = e 2o Ak e—A
oV Flk; X) = Pr(X = k) = =,

Venkatesh Vinayakarao 20



What form will suit us?

Prior
>
o
0.0 0.2 0.4 o 06 08 1.0
Likelihood
= Data: z=3N=5 —
=
- - s - _— h - —
0.0 02 04 o 06 0.8 1.0
Posterior
=)
=3
o
0.0 0.2 0.4 o 0.6 0.8 1.0
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Beta Distribution

Vadivelu, a famous Tamil comedian.
This is one of his great expression
- terrified and confused.

Venkatesh Vinayakarao
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Beta Distribution

 Takes two parameters Beta(a,b)
* For now, assume a= #ZH + 1and b= #ZT + 1

« After 10 flips, we may end up in one of these
three:

| Betaiz.8) Beta(8,2)

4
34
2_-
1_
0
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Prior and Posterior

Let's say we have a Strong Prior - Beta (11,11).
What should happen if we see 10 more
observations with bH and 5T?
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Prior and Posterior...

What if we have not seen any data?

o
o

15

beta(1,1)

1.0

05

00

0.0 0.2 04 06 08 1.0
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Conjugate Prior

So, we see that:

z Heads in
Prior N tricls Posterior
beta(a,b) ‘ beta(a+z,b+N-z)

Such Priors that have same form are called
Conjugate Priors
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Summary

vPrior

v Likelihood
v'Posterior

v Bayes' Rule

v Bernoulli
Distribution

v Beta
Distribution

5 Prior
< beta(6[1,1)
oo |
Q-‘__
o
(] T T T T T T
0.0 0.2 0.4 0 0.6 0.8 1.0
Likelihood
=1 Data: z=3,N=5
|
03
o 4
8 .
) 0.2 04 , 06 0.8 1.0
S Posterior
_ beta(0]4,3)
o, p(D)=0.0167
=
o
o T T T T T T
0.0 0.2 0.4 0 0.6 0.8 1.0
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Designing Search
Engines



Which Document to Retrieve?

Query = "BITS Pilani”

— | Retrieval d;:"BITS Pilani Goa

Model Campus”
<] {VSM,LDA,
Results = ?? BM25, ..} d,:"IIIT Delhi

Indexed Content
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An Elegant Approach

Revisiting
Linear Algebra
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Vectors

« Geometric entity which has magnitude and
direction

Y A

—

1 X

« If (x,y) is our vector of interest, this figure
shows A vector = (1,1).
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How is (2,3) Different?

ys| (2,3)
A
Y (1,1)
1_/
] < < >




What is (1,1,1) ?

(0,0,1) /

~461.1.1)

.
,
0.0)

I

I

(1.1.0)
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Remember!

A number is just a mathematical

object. We give meaning to it
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Sentences are Vectors

* "Sri City" as a vector

= City

—_—
Sri City

» o
1 Sri
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Sentences are Vectors

« "ITTIT Sri City" is a 3-dimensional vector

-
(o
(o
H“ >
IITIT Sri City
I_M \
| >
1 City
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Sentences are Vectors

* On this 3D space, "Sri City" vector will lie on
the x (City) and z (Sri) plane. If (x,y,z)
denotes the vector, Tori City" is (1,0,1).

o
Sri City

EiTy
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Natural Language Phrases as
Vectors

Let query q = "LIIT Sri City".

Let document, d; = "TIIT Sri City" and d, =
"TIIT Delhi”.

__|IIIT |Sri_[City |Delhi]
g 1 1 1 0

d 1 1 1 0
dZ 1 0 o0 1

q=(1110),d;= (1,1,1,0) and d, = (1,0,0.1)
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Quiz
» Considering the following vectors:
____IIIT |Sri_(City |Delhi
g 1 1 1 0

4 1 1 1 0
d, 1 0o 0 1

. (Vé)/qalf CI)S) ghe Natural Language (NL) equivalent of

* What is the NL equivalent of (1,0,0,1) ?
 What is the vector for Delhi?
* What is the NL equivalent of g?
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Comparing Sentences

« We can compare sentences using the angle
between vectors

Chennai

The Chennai

<
%» The 55N

, >
1 SSN

—
|
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Angle between two vectors

* What is the angle between The and SSN
vectors?

« What is the angle between SSN and Chennai
vectors?

« What is the angle between The SSN and
The SSN vectors?
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Similarity Score

e D1 = "Chennai”
e D2 = "Chennai”

* Quiz
* Ona scale of 0 -1, how similar are D1 and D2?

« O = Dissimilar
« 1 = Identical
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How to Convert [0 to 90] - [1 to O]

Revisiting Trigonometry



Converting from "0 - 90" 1o "1 -

Oll
* For convenience, We convert the
angles O - 90 to values 1 -0 \/q
« When vectors are perpendicular, we ~3, >4

want to output O.

« When vectors are same, we want to
output 1. 4
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0-90to1-0: How?

1 1 V3
0 5 7 =5 1
Z | 2 |2
1 g N 2 0
0 —}5- 1 3 Not defined
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Back to Trigonometry

* If x and y are non-unit vectors, what is the
cosine of angle between them (cos 6)?

a.b = |lal| ||b]| cos(B)

a.b
llal| 1b]]

similarity(a,b) = cos(6) =
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Which Document to Retrieve?

Query = "BITS Pilani”

— | Retrieval d;:"BITS Pilani Goa

Model Campus”
<] {VSM,LDA,
Results = ?? BM25, ..} d,:"IIIT Delhi

Indexed Content
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A Boolean Term Document
Matrix

“TBrs pilan lGoa |Campus |IIET |Delhi
q 1 1 0 0 0 0

d, 1 1 1 1 0 0
d, 0 0 0 0 1 1
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Example

Let query g = "BITS Pilani”.

Let document, d; = "BITS Pilani Goa Campus” and d, = "ITIIT Delhi".

______[BITS _|Pilani _|Goa _|Campus [IITT | Delhi _
1 1 o) 0 0 0

d, 1 1 1 1 0 0
d, 0 0 0 0 1 1

Inour VSM,q=(11,0,0,0,0),d=(11110,0)and d, =(0,00,0,1,1)

similarity(d; q) = = 11+11 =0.71.

|ld, || IIqII T V12412412412 V12 +12

similarity(d, q) = = 0.

la, ||||CI||

Venkatesh Vinayakarao

50




References

Introduction to Modern Information
Information Retrieval Retrieval - Yates and
- Manning, Raghavan  Neto.

and Schutze.

Introduction to Modern
Information Retrieval

Venkatesh Vinayakarao


https://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://people.ischool.berkeley.edu/~hearst/irbook/

Summary

Results = ??

-
£ 1
L - IT Pl o . N :
SR Query = 2 —>S — | Refrieval B d:"BITS Pilani Goa | |
’ : Model : Campus” |
{VSM, LDA, Q |
BM25, _} X d,:"IIIT Delhi
2
L]

Posterior

5 | p(D)=0.0167

Vector Space Model

Bayesian Data for Information
Retrieval

Analysis

Software systems are becoming increasingly complex.

Our ability to design effective abstractions
matter!
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Thank You.



