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Big Data is Ubiquitous
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How to tame complexity?

To make sense out of the data…

Answer: Design effective models!



A Simple Model

6

Data Set

Question: What is the risk 
(high or low) if age is below 
25?
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Agenda

• Case Study 1: How to make decisions based 
on data?
• Bayesian Data Analysis

• Case Study 2: How to effectively retrieve 
relevant documents?
• Vector Space Models
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Bayesian Data Analysis 
and 

Beta Distribution
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Thomas Bayes, 1701 to 1761



The Case of Coin Flips

General Assumption: If a coin is fair! Heads 
(H) and Tails (T) are equally likely. But, coin 
need not be fair 
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Experiment with Coin - 1
HHHTTTHTHT

Experiment with Coin - 2
HHHHHHHHHT

Coin-1 more likely to be fair when compared to coin-2.



Our Beliefs

• Can we find a structured way to determine 
coin’s nature?
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Coin-1

Data 
Observed

None H T H T

Belief Fair Skewed Fair Skewed Fair

Coin-2

Data 
Observed

None H H H H

Belief Fair Skewed More
Skewed

Even
More…

Even Even
More…

Prior Belief
Belief Updates



Strong Prior

Priors

• Priors can be strong or weak
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Coin is lab tested for 1 Million Tosses. 
50% H, 50% T observed.

One more observation will 
not change our belief 

significantly.

Weak Prior

New Coin
A few observations 

sufficient to change our 
belief significantly.



HyperParameter

• Prior probability (of Heads) could be 
anything:
• O.5 → Fair Coin
• 0.25 → Skewed towards Tails
• 0.75 → Skewed towards Heads
• 1 → Head is guaranteed!
• 0 → Both sides are Tails.
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We use θ as a HyperParameter to visualize 
what happens for different values.



World of Distributions

Discrete Distribution of Prior. Since I 
typically perceive coins as fair, Prior belief 
peaks at 0.5.
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Another Possibility

I may also choose to be unbiased! i.e., θ may 
take any value equally likely.
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A Continuous Uniform Distribution!



Observations

Let’s flip the coin (N) 5 times. We observe (z) 
3 Heads.
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Impact of Data

Belief is influenced by Observations. But, 
note that:
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Belief ≠ observation

Bayes’ Rule



Numerator is easy

• p(θ) was uniform. So, nothing to calculate.

• How to calculate p(D|θ)?
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Jacob Bernoulli
1655 – 1705.

θ𝑧 1 − θ 𝑛−𝑧

If D observed is HHHTT and θ is 0.5,
We have:

p(D|θ) = (0.5)3 1 − 0.5 5−3

Remember, two things: 1)we are interested in the 
distribution 2) Order of H,T does not matter.  



Painful Denominator

• Recall, for discrete distributions:

• And, for continuous distributions:
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Bayesian Update
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A Simpler Way

Form, Functions and Distributions
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Normal (or Gaussian) Poisson



What form will suit us?
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Beta Distribution
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Vadivelu, a famous Tamil comedian. 
This is one of his great expression 

- terrified and confused.



Beta Distribution

• Takes two parameters Beta(a,b)

• For now, assume a = #H + 1 and b = #T + 1.

• After 10 flips, we may end up in one of these 
three:
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Prior and Posterior

Let’s say we have a Strong Prior – Beta (11,11). 
What should happen if we see 10 more 
observations with 5H and 5T?
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Prior and Posterior…

What if we have not seen any data?
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Conjugate Prior

So, we see that:

Such Priors that have same form are called 
Conjugate Priors
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Prior 
beta(a,b)

Posterior 
beta(a+z,b+N-z)

z Heads in 
N trials



Summary

Prior

Likelihood

Posterior

Bayes’ Rule

Bernoulli 
Distribution

Beta 
Distribution
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References

Book on Doing 
Bayesian Data 
Analysis – John K. 
Kruschke.

YouTube Video on 
Statistics 101: The 
Binomial Distribution
– Brandon Foltz.
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http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/
https://www.youtube.com/watch?v=ConmIDAzRqI


Designing Search 
Engines



Which Document to Retrieve?

d1:“BITS Pilani Goa 
Campus”

d2:“IIIT Delhi”

I
nd

e
x
e
d
 C

on
te

nt

Retrieval 
Model

{VSM, LDA, 
BM25, …}Results = ??

Query = “BITS Pilani”
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An Elegant Approach

31

Revisiting 
Linear Algebra
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Vectors

• Geometric entity which has magnitude and 
direction

• If (x,y) is our vector of interest, this figure 
shows A vector = (1,1).

32

x

y
A 

1

1
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How is (2,3) Different?

33

x

y (2,3)3

2x

y
(1,1) 

1

1
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What is (1,1,1) ?
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Remember!

35

A number is just a mathematical 
object. We give meaning to it!
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Sentences are Vectors

• “Sri City” as a vector

36

Sri
C
it
y

Sri City
1

1
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Sentences are Vectors

• “IIIT Sri City” is a 3-dimensional vector
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City
I
I
I
T

IIIT Sri City

1

1

Venkatesh Vinayakarao



Sentences are Vectors

• On this 3D space, “Sri City” vector will lie on 
the x (City) and z (Sri) plane. If (x,y,z) 
denotes the vector, “Sri City” is (1,0,1).
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City
I
I
I
T

Sri City
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Natural Language Phrases as 
Vectors

Let query q = “IIIT Sri City”. 
Let document, d1 = “IIIT Sri City” and d2 =
“IIIT Delhi”.

q = (1,1,1,0), d1= (1,1,1,0) and d2 = (1,0,0,1)
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IIIT Sri City Delhi

q 1 1 1 0

d1 1 1 1 0

d2 1 0 0 1
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Quiz

• Considering the following vectors:

• What is the Natural Language (NL) equivalent of 
(0,1,1,0) ?

• What is the  NL equivalent of (1,0,0,1) ?
• What is the vector for Delhi?
• What is the NL equivalent of q? 
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IIIT Sri City Delhi

q 1 1 1 0

d1 1 1 1 0

d2 1 0 0 1
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Comparing Sentences

• We can compare sentences using the angle 
between vectors

SSN
C
h
e
nn

a
i

The SSN
1

1

The Chennai
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Angle between two vectors

• What is the angle between The and SSN
vectors?

• What is the angle between SSN and Chennai
vectors?

• What is the angle between The SSN and 
The SSN vectors?
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Similarity Score

• D1 = “Chennai”

• D2 = “Chennai”

• Quiz
• On a scale of 0 – 1, how similar are D1 and D2?

• 0 ➔ Dissimilar
• 1 ➔ Identical
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How to Convert [0 to 90] → [1 to 0]

Revisiting Trigonometry



Converting from “0 – 90” to “1 –
0”

• For convenience, We convert the 
angles 0 – 90 to values 1 - 0
• When vectors are perpendicular, we 

want to output 0.
• When vectors are same, we want to 

output 1. 

q
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0 – 90 to 1 – 0: How?
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Back to Trigonometry

• If x and y are non-unit vectors, what is the 
cosine of angle between them (cos ϴ)?
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similarity(a,b) = cos(ϴ) = 
𝑎.𝑏

𝑎 | 𝑏 |

𝑎. 𝑏 = 𝑎 | 𝑏 | cos(ϴ)



Which Document to Retrieve?

d1:“BITS Pilani Goa 
Campus”

d2:“IIIT Delhi”

I
nd

e
x
e
d
 C

on
te

nt

Retrieval 
Model

{VSM, LDA, 
BM25, …}Results = ??

Query = “BITS Pilani”
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A Boolean Term Document 
Matrix

BITS Pilani Goa Campus IIIT Delhi

q 1 1 0 0 0 0

d1 1 1 1 1 0 0

d2 0 0 0 0 1 1
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Example

Let query q = “BITS Pilani”. 

Let document, d1 = “BITS Pilani Goa Campus” and d2 = “IIIT Delhi”.

In our VSM, q = (1,1,0,0,0,0), d1= (1,1,1,1,0,0) and d2 = (0,0,0,0,1,1)

similarity(d1, q) = 
𝑑
1
.𝑞

𝑑
1

| 𝑞 |
= 

1.1 + 1.1
12+12+12+12 12+12

= 0.71. 

similarity(d2, q) = 
𝑑
2
.𝑞

𝑑
2

| 𝑞 |
= 0.

BITS Pilani Goa Campus IIIT Delhi

q 1 1 0 0 0 0

d1 1 1 1 1 0 0

d2 0 0 0 0 1 1
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References

Introduction to 
Information Retrieval 
– Manning, Raghavan 
and Schutze.

Modern Information 
Retrieval – Yates and 
Neto.
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https://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://people.ischool.berkeley.edu/~hearst/irbook/


Summary
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Software systems are becoming increasingly complex.

Our ability to design effective abstractions 
matter!

Bayesian Data 
Analysis

Vector Space Model 
for Information 

Retrieval



Thank You.


