TEQIP III Sponsored One Week Short Term Training Program
Graph Theory and its Applications
Delhi Technological University

Graphs in Program Analysis

Venkatesh Vinayakarao

Chennai Mathematical Institute

venkateshv@cmi.ac.in
November, 2019

“The supply of grand challenges ... shows little sign of drying up.”

— Harman and O’Hearn in “Opportunities and Open Problems for Static and Dynamic
Program Analysis”, Madrid, Spain, 2018.

Venkatesh Vinayakarao (Vv)

About Me

Teaching & Research
(IR + PA + SE)

2018
PhD (IR + PA + SE)

Software Engineer
Yahoo, Microsoft

2009
Software Engineer
2001
MS (Information Tech.)
2002
Software Engineer

Year 2000
BE (Computer Science)

Agenda

* Program Analysis — A Gentle Introduction
* Why analzye programs?

* A Data Flow Analysis Framework

* Research Trends

Problem in Code!

class Immortal {
public static veoid main(String[] args) {

int x;
X =1;

while (true) { .
x = -x: this code?

Any problem in

system.out.println("Result = " + X);

}

Built into Eclipse

2 public class Immortal {

32 public static wvoid main(5tring[] args) {
4 int w;

2

b X =1;

7 while(true) {

& ¥ o= -,

: }

L]

“fa Unreachable code

1 quick fix available:

¥ Remove E}

[y

L

Another Problem Code!

private static int test() {
int x;
int v;
¥ o= X

Any problem in
return x; this code?
¥

IDE Catches Somel

private static int test() {
int x;
int vy;
¥ = Ko
The local vanable x may not have been initialized

7

Source Code Optimization

* How to optimize this?

if (x 1=58) x=25;

e Simply,

http://icps.u-strasbg.fr/~bastoul/local _copies/lee.html

Constant Folding and Propagation

inta =30;
intb=9-(a/5);
int c;

c=b*4

if (c>10) {
c=c-10;

}

return c * (60 / a);

A 4

inta =30;
intb=3;
int c;

c=b *4,
if (c>10) {

c=c-10;
}

return c * 2;

return 4;

Y

int a = 30;
intb=3;
int c;

c=12;
if (true) {
c=2;
}

return c * 2;

\ 4

int c;
c=12;
c=2;
return c * 2;

Program Analysis

: Data Structures
Programs ——| / Intermediate Analysis Results
: Representation

\ Automation

-— e o o e o o O S T S S S S S S S S e S e e .

-— e e e - - et

~

Why Study Program
Analysis?

Everyone is in a hurry...

4 =

U = \ :'{Et:f‘" 'y

Software Reliability: An Issue

For more, visit http://www.cs.tau.ac.il/~nachumd/horror.html

Mars Orbiter Crash

* Primary Cause: Results reported in wrong units

e "Various officials at NASA have stated that NASA
itself was at fault for failing to make the
appropriate checks and tests that would have
caught the discrepancy.”

https://spectrum.ieee.org/aerospace/robotic-exploration/why-the-mars-
probe-went-off-course

Security Breaches

Aadhaar details leaked after TRAI chief throws
breach challenge

Alleged personal details of Indias telecom watchdog chief R.S. Sharma were leaked on Saturday after the TRAI
chairman threw a challenge and tweeted his 12-digit Aadhaar asking if it had macde him vulnerable to any security risk.

259 AM - 12 Feb 20019
Elliot Alderson @fs0cl31ly - Jan 30 & Pinned Tweet

With more than 100,000,000 downloads @ESFileExplorer is on Elliot Alderson @fs0cl3ly - Feb 12
=" tamous Android file ma nager. Bonus: the list of applications in a A new #Aadhaar breach is coming cc @UIDAI *5%
FRMETT

victim's phone is stored in an unsecured way. o
" Y Qw01 M2 O i1xk M
ES File Explorer is leaking the apps installed on yo...

With more than 100,000,000 downloads ES File Explorer
o is one of the most famous Android file manager. Bonus:
the list of applications installed on the tel is. ..

Q 10 11 34 O 87 9

Microsoft Research

Working at Microsoftv Students and graduates~ Find a job~ Things to do v

@ Back to search results

RSDE
Looking for an individual that can apply programming language Job # 981039
technigques to improve the performance and correctness of software Locations United States, Redmond (WA)

executing in the cloud. The cloud is a major investment for o
. . o . Jab families Research
Microsoft, costing us large sums of capital investment and requiring

high quality of service guarantees for our customers. Teams Research

Apply now Add to job watch list

We have already demonstrated through several RISE projects that
applying PL techniques to these problems (including model

checking, symbolic execution, semantic abstractions, etc.) we can

art. Existing projects in this area include P and P# Parasail,
Uncertain, Metwork Werification, and Retro. RiSE has been
successful in applying foundational reasoning to cloud software En']power your fut
problems and leveraging our deep understanding and tool
investment (e.g. Z3 SMT sclver, Zing model checker, etc.) to create
unique and effective solutions. A candidate should hawve both

MathWorks

Software Engineer - Dynamic

Program Analysis
MathWorks - Bangalore, IN

Posted 2 weeks ago - 64 views

who is good at abstract thinking
I is a plus. You will join a dynamic
SEI"IJ'E' APP F and debugging capabilities to

to learn many of our core

technologies and apply your design and implementation skills to build parts of our
product from ground up.

* [Design data-structures and algorithms for data-flow analysis of
Simulink/5tateflow models and generated code

* Build customer visible Uls for configuring and invoking analysis and
transformation engines

& Macdkirlemata e mrmlibmctiirn mmn Alamime mam-

Oracle Labs

| Oracle Labs Australia

QOverview External Presence Careers Visitor Information

4AWORKING WITH US

Interested in working for Oracle Labs, Australia?

Watch this to find out more about the projects we work on.
‘Watch this 1o hear some testimonials from previous students.

4CURRENTLY ADVERTISING
The following CEED internships are currently available for students.

Compiling MySQL to LLVM for Static Program Analysi
Analysi oud
Security Analysis of Open Source Java Enterprise Applications
PDF Malware Detection Tool

Bug_Finding_Metrics Visualisation

IBM [RL

Current object-oriented languages have revealed several drawbacks with
respect to parallel/concurrent programming at the level of unstructured
threads with lock-based synchronization. IBM Research is developing X10,
a modern object-oriented programming language designed for high
performance with explicit programmer defined parallelism for realizing
high productivity programming of parallel computer systems. The key
features of X10 include explicit reification of locality in the form of places,
support for a partitioned global address space (PGAS) across places, and
lightweight activities embodied in async, future, foreach, and ateach
constructs which subsume communication and multithreading operations in

other lan Ol e tic program analysis (for
E}:arn|:|Ie,iMav-Happen-in-F‘aralIEI analysis| Bad Place Analysis),
compilation for C/C++, debugaging for X10, and assessment and semi-

automated migration of domain-specific serial code to emerging multi-core
architectures, leveraging productive programming models and their
variants (such as OpenMP, OpenCL).

More...

CodeSearch - Senior Software
Engineer - Program Analysis

&
' Elastic - Yokohama-shi, JP
»

Posted 2 weeks ago - 207 views

Principal Researcher -

| Phd/Program Analysis
ORACLE Oracle - Brisbane, Australia

-
74

Posted 6 days ago - 79 views

Graphs in Program
Analysis

Program Analysis

: Data Structures
Programs ——| / Intermediate Analysis Results
: Representation

\ Automation

-— e o o e o o O S T S S S S S S S S e S e e .

-— e e e - - et

~

Reaching Definitions (RD) Analysis
|

V=X [y :=x]"
_ 1. Flow J
Z=4 graph: [z :=1]?
while (y > 0) {
z=2%y, [y > 0]° y :=0]°
y=y-1 |
} z:=z=xy]"
-0 |
Y yi=y—1

The assignment [x := a]‘ reaches ¢’ if there is an execution

where x was last assigned at €. Does [z := 1]? reach 5?

Principles
of Program
- Analysis

Data Flow Analysis

The Classic Four!

Reference: Principles of Program Analysis, by Nielson, Nielson and Hankin.

WHILE Language

e Simple Imperative Language
S refers to Statements, a is an Arithmetic
Expression and b is a Boolean Expression
ax=x|n|a;op,a,
b::=true | false | notb | b, op, b, | 3, op, a,
S:=[x:=a]'| [skip]' | 54 S; |
if [b]' then S, else S, | while [b]'do S

-low
y := x]?

e L1 Flow 1

y = graph: [z:= 1)?

[z :==1]7;

while [y > 0]° do [}FE;U]B
[z 1= z * y|*; |
yi=y—1p [z :=z*y]*

od;]

[y 1= 0]° ly:=y—1J]°

Example taken from Principles of Program Analysis, Nielson et al.

Labeled Programs and Control

Reaching Definitions (RD) Analysis

* The assighment [x := a]‘ reaches ¢ if there is an
execution where x was last assigned at ¢.

[y = x]%;

[z=1]%

while [(y > 0)]3 {
[z=2*y]%
ly=y-1J>

}

[y = 0]°

Does [z := 1]? reach 57

RD Analysis

Labeled
Input Program

RDentry(e)

RDexit(e)

O U1l ph W N =+ |

(x,2),(y,?)(z,?)

(x,2),(y, 1)(z,?)

[y = x]*;

[z =1]%

while [(y > 0)]3 {
[z=2*y]%
ly=y-1]>

}

[y = 0]°

RD Analysis

Labeled
Input Program

RDentry(e)

RDexit(e)

O U1l ph W N =+ |

(x,2),(y,?)(z,?)
(x,2),(y, 1)(z,?)

(x,2),(y, 1)(z,?)
(x,2),(y, 1)(z,2)

[y = x]*;

[z =1]%

while [(y > 0)]3 {
[z=2*y]%
ly=y-1]>

}

[y = 0]°

RD Analysis

Labeled
Input Program

¢ RD 1ty (©) RD,i(0)

1T (x2)(y,?)(z,?) (x,2),(y, 1),(z,?)

2 (%?2),(y,1)(z,7) (x,2),(y, 1),(z,2)

3 (X2, 1(z2) (x,2)(y,1)(z,2)(z,4)
(z,4),(y,5) (Y,3)

4

5

6

[y = x]*;

[z =1]%

while [(y > 0)]3 {
[z=2*y]%
ly=y-1]>

}

[y = 0]°

RD Analysis

Labeled
Input Program

O U1 A W N 2|

entry() RDexit(e)
(%,?),(v,?),(z,?) (%,?),(y,1),(z,?)
(%,?),(y,1),(z,?) (%,?),(y,1),(z,2)

(%,?),(v,1),(z,2)(z,4),(v,5) (x,?),(y,1),(z,2),(z,4),(y,5)
(%,2),(v,1),(z,2)(z,4),(v,5) (x,?),(y,1),(z,4),(y,5)
(x,?),(y,1),(z,4),(y,5) (x,2),(y,5),(z,4)
(%,2),(y,1),(2,2),(z,4),(y,5) (x,?),(y,6),(2,2),(z,4)

[y = x]*;

[z =1]%

while [(y > 0)]3 {
[z=2*y]%
ly=y-1]>

}

[y = 0]°

How to Automate?
* We write a system of equations

RDt(1) = (RDgrery(1) \{ (v0) | €€ Lab}) U{(y,1))
RDyir(2) = (RD,nry(2) \ { (2,0) | ¢ Lab}) U{(2,2) }
RDexit(3) = RI:)entry(g)

RD¢,it(4) = (RDgpery(4) \ { (z,0) | €€ Lab}) U {(z,4) }
RDeyit(5) = (RDenery (5) N { (v,6) | €€ Lab}) U {(y,5) }
RDeit(6) = (RDenery(6) \ { (v,€) | €€ Lab}) U {(y,6) }

where Lab ={1,2,3,4,5,6}

System of Equations...

e Similarly, specify RD....(¢) for each line.

entry

RDentry(z) = RDexit(l)
RDentry(3) = RDexit(z) U RDexit(S)
RDentry(4) = RDexit(3)
RDentry(S) = RDexit(4)
RDentry(6) = RDexit(3)

RDenery(1) = 1(x,?),(y,?),(2,?)}

System of Equations...

* 12 Equations with 11 unknowns

Find the least solution

* We have a 12-Tuple, RD = RD¢niry(1), - ;RDyi1(6)
* RD = F(RD)

A Simple Iterative Algorithm

RD =(9,.... 0)
1=0;
while RD # F(RD,, - - -, RD,)
do RD :=F(RD,, - - -, RD,,)

Simple Iteration

¢ RDg () RDeilf) ¢ RDeniny(©) RDit(0)
1 0 0 T {(x?)(v,?).(z,?)} @
2 ¢ 0 F(RD) 2 ¢ ¢
3 0) 0) — 3 0) 0)
4 1) 1) 4 1) 1)
5 1) 1) 5 1) 0
6 1) 1) 6 1) 0

F(RD)

RDentry(1) = {(%,2),(y,?),(2,?)}
RDentry(z) = RDexit(1)

RDentry(3) = RDexit(2) U RDexit(S)

RDentry(4) = RDexit(3)
RDentry(S) = RDexit(4)
RDentry(G) = RDexit(g)

RDit(1) = (RDenery (1) N { (v,€) | €€ Lab}) U {(y,1) }
RD¢yit(2) = (RDgpery(2) \ { (2,€) | € Lab}) U {(z,2) }

RDexit(B) = RDentry(3)

RD¢yit(4) = (RDnry (4) \ { (2,6)
RD¢yit(5) = (RDenery (5) N { (,6)
RD¢it(6) = (RDenery (6) \ { (Y,£)

¢elab})U{(z4)}
Celab}) U{(y5)}
(e lab}) U{(y6)}

Reaches a Fixed Point

entry() RDexit(e)
(x,2)(y,?),(2,?) (x,2)(y,1),(z,?)
(x,2)(y,1),(z,?) (x,2)(y,1),(z,2)

F(RD) %2y, 1),(z2)24),y,5) (%?)(y,1)(2,2),z4),(y,5)
2, 1)Z2Z415) %2y 1)z49.(y.5)
(x,2),(y,1),(z,4),(y,5) (x,2),(y,5),(z,4)

(X, 2y, 1)(z,2)(z4)(y,5) (X,2)(y,6)(z,2),(z,4)

O 01 ph W DN =

The Question

* Does the definition of zin line 2 reach line 57

x]*;

1% Answer: No!
while [F’ - 013 do Since) RDentry(S) = (XI?)I(yll)I(ZI4)I(YI5)

y

[z :

. — 4.
[z =z xy]"; There is no (z,2) in it.

y:=y—-1]°

The Setup: Some Preliminaries

* The initial label of a statement.

init: Stmt -> Lab

init([x.=al]*) =¢
init([S4;55]9) = init(Sy)
init(Sklp] Y =t
(if
(

init(if [b]* then S, elseS 5) =
init(while [b]* do S)

Setup

* Final Labels
final: Stmt -> P(Lab)
fina aly) = {¢

(X
final ([S S]) = final(5,)
final (sk|p Y =
(if
(

final (if [b]¢ then S, else S.) = final (S4) U final(S,)
final (while [b]¢ do S) {¢}

Setup

* \We use Blocks to refer to set of statements

blocks: Stmt -> P(Blocks)

plocks ([x:=al]*) = {[x:=a]"}

plocks ([51;55]%) = b|OCkS(S1) U blocks(S,)

blocks ([skip]®) = {[skip]‘}

plocks (if [b]* then S, else S,) = {[b]*} Ublocks(S,) U
plocks (S5)

plocks (while [b]¢ do S) = {[b]*} U blocks(S)

Setup

* We refer to a statement with a label

labels: Stmt -> P(Lab)

labels(S) = {¢ | [B]* € blocks(S) }
init(S) € labels(S)
final (S) € labels(S)

Setup

* The edges of our flow graphs are captured using a
flow function.

flow: Stmt -> P(Lab x Lab)

S5) = flow(Sy) U flow(Ss) U {(¢ init(S5)) | €€ final(Sy)}
[skip]) =0
it [b]* then S, else S,) =

flow(Sy) U flow(S5) U {(¢, init(S,)), (€ init(S5))}
flow(while [b]¢ do S) = flow(S) U {(¢, init(S))} U {(¢,¢) | € € final(S)}

flow denotes forward flow here.

Example

* Program power is given below:
[z:=1]1; while [x>0]? do ([z:=z*Vy]3; [x:=x-1]%)

What are init(power), final(power), labels(power) and
flow (power) ?

Example

* Program power is given below:
[z:=1]%; while [x>0]% do ([z:=z*VY]3; [x:=x-1]%)

What are init(power), final (power), labels(power) and
flow (power)?

init(power) = 1
final (power) ={2}
labels (power) = {1,2,3,4}
flow (power)= {(1,2),(2,3),(3.4),(4,2)}

Label Consistency Assumption

* All blocks are uniquely labeled.

[B, 1% [B,]* € blocks(S) = B, =B,

Generalizing Data Flow
Equations

Recall, RD Equations Were...

RDentry(1) = 1(%,2),(y,?),(2,2)}
RDentry(z) = RDexit(l)

RDeniry(3) = RDgyit(2) U RDyi(5)
RI:)entry(él') = RDexit(B)

RDentry(S) = RDexit(4)

RI:)entry(6) = RDexit(B)

RD (1) = (RDgpr (1) \ { (v,0) | €€ Lab}) U{(y,1) }
RDp1(2) = (RDer (2) \ { (2,0) | €€ Lab}) U{(2,2))
RDexit(a) = RDentry(?’)

RD¢yi(4) = (RDgper (4) \ { (z,6) | L€ Lab}) U {(z,4) }
RD¢yit(5) = (RDenery(5) \ { (v,€) | € € Lab}) U {(y,5) }
RD¢it(6) = (RDenery(6) \ { (v,) | € € Lab}) U {(y,6) }

Generalizing the Entry and Exit

{(x,?) | x € Var. } if € = init(S«)

RDery(€) = U {RD.(¢) | (¢, ¢) € flow(S«)} otherwise

exi

RD¢,it€) = (RDgpery(€) \ Killzp(BY)) U geng,y(BY)
where B¢ € blocks(S«)

May Analysis Forward Analysis

Least Solution
Desired

The kill and gen Functions

killep ([x:=a]) = {(x,?)} U {(x,€¢) | B'is an assignment to x in S*}
4

illo ([skip]t) =
killo ([D]9= @

gengp([xi=al®) = {(x, 0}
gengp ([skip]®) =
gengp([b]9) = @

The Kill and gen Sets

Labeled
0 kil (¢) gen.(0) Input Program
1 {x?2)x1)x5)} {(x1)} [x = 5]%;
2 {(y2y.21y, 4} {(v,2)} [y = 11%
3 0 0 while [(x > 1)]3 {
4 {(y,2)y.2.y,4)} {y4)} [y =x*yl%
5 {(x?2),x1),(x5)} {(x,5)} [x=x-1]>;

}

Let us now write the flow equations and
solve them to find the reaching definitions.

Flow Equations

RDenin(1) = {(x,2),(y,?);}
RDentry(z) = RDexit(.‘l)

RDentry(3) = RDexit(z) U RDexit(5)
RDentry(4') = RDexit(?’)

RDentry(5) = RDexit(4)

RDit(1) = (RDenery (1) \ {(x,2),(x,1),(x,5)1) U { (x,1) }
RDei(2) = (RDentny(2) \ {(y,2)y,2),(y,4))) U { (v,2) }
RDexit(3) = RDentry(3)

RD¢;i(4) = (RDentn(4) \ {(y,2)(y,2),(y,4)}) U { (y,4) }
RDit(3) = (RDentry(3) \ {(x,2),(x,1),(x,5)}) U { (x,5) }

Summary

Data Flow Analysis

/ RDentrny (1) = {(x,?),(y,?)} \
= 1. i RDent (2) = RDexitU)
[x - 5] ’ e kl"RD(e) genRD(e) RDentz(S) = RDexit(Z) U RDexit(S)
[y = 1]2; 1 {(X,?),(X,‘I),(X, 5)} {(X, 1)} ggentry(g) i ggexit(i)
while [(x>)3 { —— 2 {#20:2D04) {12} —p o) T ROl
Tt S I L N ot et
RD¢,i(2) = (RDepen(2) \ {(y,?)(y,2),(y, 4 Y,
[X =X- 1]5, 4 {(Y??):(Y?Z)v(yy4)} {(yv4)} RD,,(3) = RDentwr)(3)
5 X,? y X,1 , X,5 X,5 RD¢yit(4) = (RDepyry(4) \ {(yl7)r(y12)!(Yl4)}) U { (v:4) }
} L) LD B LD, RD,(5) = (RDopy(5) \ {(2),0,1),(x5)) U { (x5) }
Input Program k /

l

¢ RDentry(e) RDexit(e)
1 {(x2)(y,?)} {(y,2).(x, 1)}
2 {y,2(x, 1)} {(x,1).(y.2)}

3 {x1).(:2).y:4x5)} {(x,1).y,2).ly,4)x,5)}
4 {12y, x5)} {(x1).(y,4).(x,5)}
5 {(X? 1)?(y’4-)"(x’I 5)} {(y"4-)"(x'I 5)}

Analysis Result

Live Variable Analysis

* A variable is live if there is a path from the label to
a use of the variable that does not re-define the
variable.

X =2;
y=4;
X=1;
if (y>x){ (x,1) is not live at exit.
Z=Y; Useful in Dead code Elimination
} else { and register allocation
z=y*y,
}
X=2z

Summary

Data Flow Analysis

= 21% / ¢ killy(0) VO o e) \
| en ent| = LVexit bV
[y = 4]2;] {L} 9 QI)- Lvent:(s) = WVoir(3) \ {x}
. — 3 . X LVent (4) = LVexit(4) u {X;V}
[x = 1]3; > W @ Werin(5) = Wir5) \ (2} U {9}
if [(y>x)]*{ Wentry(6) = Weie(6) \ {2} U {y}
s — 3 {x} (0] LV,py(7) = {2}
[Z = y] I‘ 4 Q) {x y} Weuitl1) = Lventry(z)
} I { ' Lvexit(z) = Lventry(s)
e se * 6 5 {Z} {y} LVexit(?’) = LVentrv(4)
= * I-Vexit(4) = I-Vent (5) U I-\"'ent (6)
2=y "y 6 & iy} WoilS) = Wor?)
} i
[X = Z]7; exit - .
Input Program 1
(4 LVent,v(E] LVe,it(?.]
10)
2 90 {v}
: 3y} {xy}
May Analysis 4) iy}
5 Ay} {z}
. 6 {y} {2}
Backward Analysis 7 P

Analysis Result

Available Expressions

Data Flow Analysis

4 N

, AE,..(1) =
[x = a + b]%;) Killc(6) gen,(0) AE::t,ﬁz; e
[y =a * b]%; 1) {a+b} AE iy (3) = AEyi(2) N AE(5)
i 3 * AEentr (4) AEEXIt(3)
while ([y > a+£>]){ 2) by AEemz(S) A
{a =a+ ;}5; 3 1) {a+b} EXItE g AEentryg; 3 Ea+Ei
X=a-+ ; * Eexit Eent a*
4 {a+b, a*b, a+1} @ AEEX|t(3) AEentZ(3) U {a+b)
} 5 ? {a+b} AEqit(4) = AEeny(4) \ { a+b,a*b,a+1}
) = AE

Input Program K AE4yit(5) = ABnery(5) U {a+b}
| /

!

6 AE,0 AE.0)
1 @ {a+b}

2 {atb} {atb, a*b}
3 {atb} {a+b}
4
5

Must Analysis

Forward Analysis {a+b) v

@ {a+b}

Analysis Result

Very Busy Expressions

Data Flow Analysis

/ VBentry(1) = VBer(1) \

if [a>b]* { ¢ killa(® genys(l VBentry(2) = VBeyir(2) U {b - a}

x=b-al% A ;B() - 0 el ens
— b]3 VBentry(4) = VBexit(4) U{b-a}

ly=a-bJ : 2 ¢ {ba) VB (5) = {a~ b}

belse{ 3. 9 fab) VB_1(1) = VB, (2) N VB (4)
[y =b - a] , 4)] {b-a} VBexit(z) = VBentry(3)
[y =a- b]S' VBexit(S) =0

} > m {a_b} VBexit(4) = VBentry(S)

Input Program K P70 i /

¢ VBentry(e) VBexit(e)
1 {a-b,b-2a} {a—b,b-a}
Must Analysis 2 {a-b,b-a} {a-b}
3 {a-b})
Backward Analysis 4 {fa-bb-a} {a-b}
5 {a-b} 0

Analysis Result

Dynamic Analysis
eRun

l Analyze the

results

Example: Path Profiling

* Count the paths taken during actual execution

e consider them for optimization, distribution (with better
hardware support) and test coverage

Path Frequency
1235 100
124645 2000

12464645 10
1245 10

Another Example

z=2%;
if (z==1x) H f true
{ false
if (x>y+10) X >y+10
ERROR: fals.e/ \'“e
} ERROR!
. Execution Tree
Symbolic
variables

A Path Constraint

Example taken from Symbolic Execution for Software Testing: Three Decades Later, Cadar and
Sen.

Symbolic Execution

l Path constraints for full path
coverage

<D . Path1: IC1,
false/ X‘“e Path2: C1 && C2,

Path3: C1 && IC2

X >y+10
e X true where
@ @ Cl:x =2y

ERROR! C2: x> (y+10)

Path .
. Constraint
Constraint {x=2,y=1}
~ Solver
Xo = 2Yy

Symbolic Execution

1 Path Constraints Constraint Solver
Output
2'y ==X
fa,se/ \rue Path1: IC1 x=22,y=7)

_—- Path2: C1 && C2 {x=2,y=1}
fals.c/ \U,ue Path3: C1 && !C2 {x=30,y=15}

Has applications in Automated Test Generation

Hybrid Analysis

e Often, we hit limitations with pure static or
dynamic analysis.

* Hybrid = Static + Dynamic

Disadvantages of Symbolic
Execution

* Constraints should be simple enough that a
constraint solver is able to (efficiently) solve them.

* E.g., (2"x) % large_prime == 13

* In the case of loops or recursion, we may need to
put bounds on the number of iterations.

* Several custom functions may be uninterpreted.

Concolic Execution

* Concolic = Concrete + Symbolic

* Maintains both symbolic states as well as concrete
states.

y= passwordHash(x);
if (z==1x)

{ Constraint solver cannot
execute the uninterpreted
} else { function passwordHash(x)
ERROR;

}

Concolic Execution

Input Concrete
Execution
hash = passHash (pass); (pass =a, x =1} Execute “_n
if (x == hash) passHash(“a”).
{ Let it be
...PATH1... 4000900977878888
} else {PATHZ Leads to PATH2.
) {pass=a, x= Leads to PATH1.

4000900977878888}

Concolic Execution

* Perform Symbolic Execution dynamically

* Run the program on concrete inputs.
* One way is to start with random input values.

* Maintain a concrete state and a symbolic state

Hybrid Analysis

Research Trends

* Partial Program Analysis
* Scalable Program Analysis
* Language Independence

Summary

I’ ________________________ \\
|
! (Data Structures E
Programs ——| / Intermediate Analysis Results
! | Representation :
I‘\ __________________ Automation ,/I
[y =xI* i
[Z = 1]2: Flow |
while [[y>0)J2 { | |7 =¥
ly=y—1J% =z eyl T~ Path Frequency
} b=y | m 1235 100
* Static [y =0P° = 124645 2000
Types * Dynamic l, 12464645 10
e Hybrid] Mg} ED.@M@} 7
1 (x?L{v.7).(z.7) (x?).{v1).(z.7)
2 x?vi)(z?) (x?).{v.1).(z.2)
3 (2 1.22)z45) (%2v1)(22).24).15) Dynamic Analysis
4 (x?)yv1).(22)(z4).v5) (x?){v1).(z4).(v.5)
5 (x?hyv1).(z.4).(v.5) (x,?).{y.5).(z.4)
6 (x?)v1).(22).(z4)v5) (x7?).{v.6).(22).(z.4)

Static Analysis

