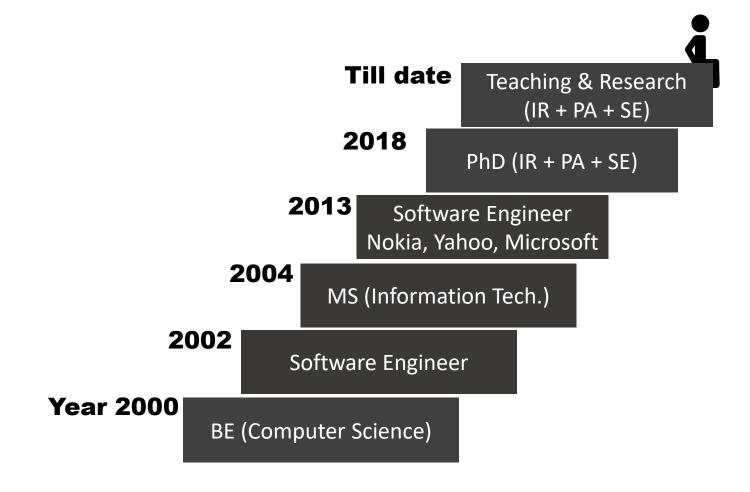


Why should **Software Developers** care for **Mathematics?**

Venkatesh Vinayakarao


venkateshv@cmi.ac.in http://vvtesh.co.in

Chennai Mathematical Institute

Mathematics, the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects.

Britannica, https://www.britannica.com/science/mathematics.

About Me

Agenda

Why should **Software Developers** care for **Mathematics**?

Will Discuss

- ✓ Concepts
- ✓ Illustrations
- ✓ Intuitions
- ✓ Purpose
- ✓ Properties

Will not Discuss

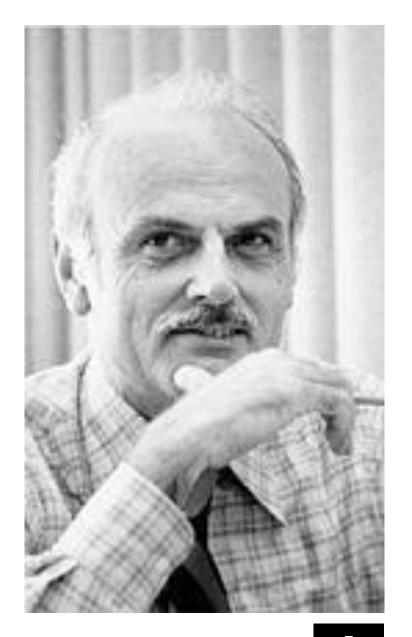
- Details
- **○** Definitions
- **⊘** Formalism
- **○** Derivations
- Proofs

Three Stories

Database, Search Engines, Text Processing

Story 1

Evolution of RDBMS and SQL


Interrelated "Data" as a Relation

The Relational Model

Edgar F. Codd PhD in Computer Science Winner of the Turing Award

"He made other valuable contributions to computer science, but the relational model, a very influential general theory of data management, remains his most mentioned, analyzed and celebrated achievement."

- Wikipedia.

The "Relation" from Math Textbook

 A relation R from a set A to set B is a subset of the cartesian product A x B.

$$\left\{ \left(\bigcirc, \bigwedge \right), \left(\bigcirc, \bigwedge \right), \right\}$$

$$\text{set } A$$

$$\text{set } B$$

$$= \left(\bigcirc, \bigwedge \right), \left(\bigcirc, \bigwedge \right), \right\}$$

$$\left(\bigcirc, \bigwedge \right), \left(\bigcirc, \bigwedge \right) \right\}$$

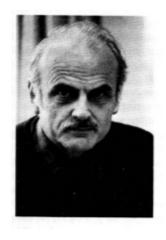
$$\text{set of all ordered pairs, } A \times B$$

$$A \times B = \left\{ (a, b) \mid a \in A \text{ and } b \in B \right\}$$

Let's say a relation exists between the reds

Relation RedShapes =
$$\{(\bullet, \triangle)\}$$

A Relation


- Let the set, $id = \{1,2,3\}$
- Let the set, name = {vv, sd}
- What is id x name?
- We have a relation if we assign a sequential id to each name.

id	name
1	sd
2	VV

id	name
1	sd
1	VV
2	sd
2	VV
3	sd
3	VV

The 1981 ACM Turing Award Lecture

Delivered at ACM '81, Los Angeles, California, November 9, 1981

The 1981 ACM Turing Award was presented to Edgar F. Codd, an IBM Fellow of the San Jose Research Laboratory, by President Peter Denning on November 9, 1981 at the ACM Annual Conference in Los Angeles, California. It is the Association's foremost award for technical contributions to the computing community.

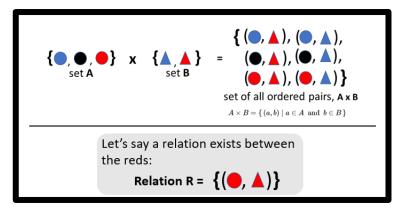
Codd was selected by the ACM General Technical Achievement Award Committee for his "fundamental and continuing contributions to the theory and practice of database management systems." The originator of the relational model for databases, Codd has made further important contributions in the development of relational algebra, relational calculus, and normalization of relations.

Edgar F. Codd joined IBM in 1949 to prepare programs for the Selective Sequence Electronic Calculator. Since then, his work in computing has encompassed logical design of computers (IBM 701 and Stretch), managing a computer center in Canada, heading the development of one of the first operating systems with a general multiprogramming capability, contributing to the logic of selfreproducing automata, developing high level techniques for software specifica-

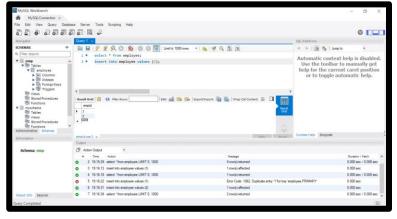
tion, creating and extending the relational approach to database management, and developing an English analyzing and synthesizing subsystem for casual users of relational databases. He is also the author of *Cellular Automata*, an early volume in the ACM Monograph Series.

Codd received his B.A. and M.A. in Mathematics from Oxford University in England, and his M.Sc. and Ph.D. in Computer and Communication Sciences from the University of Michigan. He is a Member of the National Academy of Engineering (USA) and a Fellow of the British Computer Society.

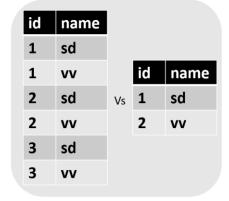
The ACM Turing Award is presented each year in commemoration of A. M. Turing, the English mathematician who made major contributions to the computing sciences.

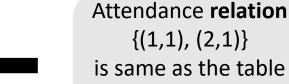

Relational Database: A Practical Foundation for Productivity

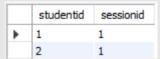
> E. F. Codd IBM San Jose Research Laboratory

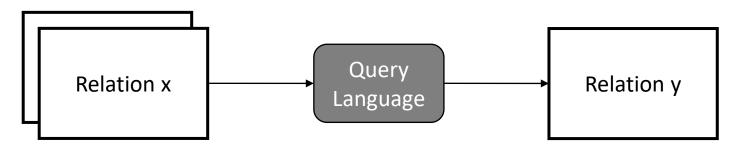

https://dl.acm.org /doi/pdf/10.1145 /1283920.128393 7?download=true

Story So Far...


What is a Relation?




MySQL – An RDBMS


Relational Data Model

Query Languages

Procedural Language

Relational Algebra

Popular Language SQL

Select Operation

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

Relational Algebra

ID	name	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

Project Operation

• Notation: $\prod_{A1, A2,...,Ak}$ (r) where A_i are attribute names

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

Example of projection:

 $\prod_{ID, name, salary}$ (instructor)

Projection

$\prod_{ID, name, salary}$ (instructor)

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

ID name salary 65000 10101 Srinivasan 12121 90000 Wu 15151 Mozart 40000 22222 Einstein 95000 32343 El Said 60000 33456 Gold 87000 45565 Katz 75000 58583 Califieri 62000 76543 80000 Singh Crick 76766 72000 83821 Brandt 92000 98345 Kim 80000

(a) The instructor table

Union, Selection and Projection

• Π_{course_id} ($\sigma_{semester="Fall"\ \Lambda\ year=2009}$ (section)) \cup Π_{course_id} ($\sigma_{semester="Spring"\ \Lambda\ year=2010}$ (section))

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

CS-101 CS-315 CS-319 CS-347 FIN-201 HIS-351 MU-199 PHY-101

course_id

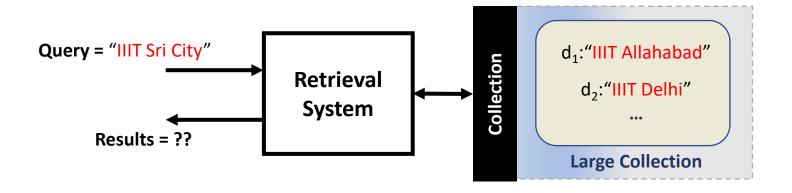
Modern day SQL

select ... from ... where ...

Union

select ... from ... where ...

Story 2


Let us build a search engine!

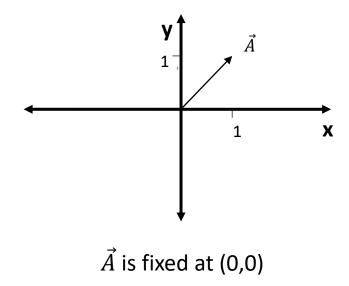
Simple Retrieval Problem

- Say, we have a collection with 5 documents, each having the following contents
 - d1: IIIT ALLAHABAD
 - d2: IIIT DELHI
 - d3: IIIT GUWAHATI
 - d4: IIIT KANCHIPURAM
 - d5: IIIT SRI CITY
- Assume, the Query is
 - IIIT SRI CITY
- Which document will you match and why?

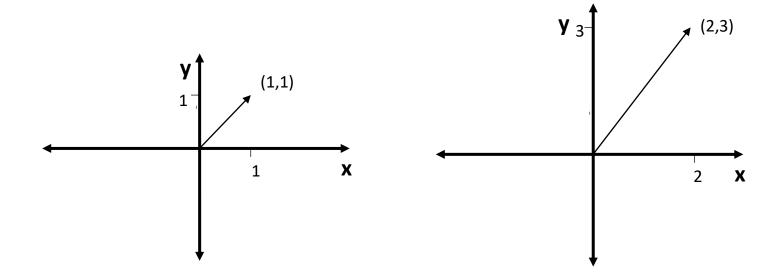
The Problem: How to Build a Retrieval System?

One (bad) Approach

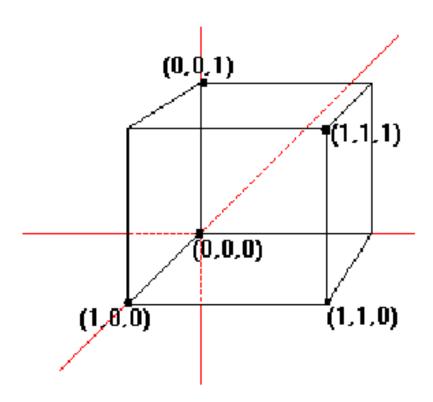
- First match the term IIIT.
 - Filter out documents that contain this term.
- Next match the term Sri.
 - Filter out documents that contain this term.
- Next match the term City.
 - Filter out documents that contain this term.


Three iterations!
Quiz: Can we do better?

A Better Approach

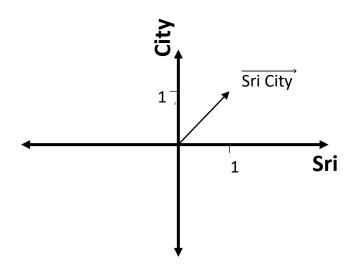

Revisiting Linear Algebra

Vector


Geometric entity which has magnitude and direction

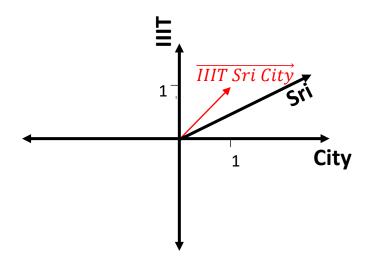
How is (2,3) Different?

What is (1,1,1)?



Remember!

A number is just a mathematical object. We give meaning to it!


Sentences are Vectors

"Sri City" as a vector

Sentences are Vectors

• "IIIT Sri City" is a 3-dimensional vector

Sentences are Vectors

• On this 3D space, "Sri City" vector will lie on the x (City) and z (Sri) plane. If (x,y,z) denotes the vector, "Sri City" is (1,0,1).

Natural Language Phrases as Vectors

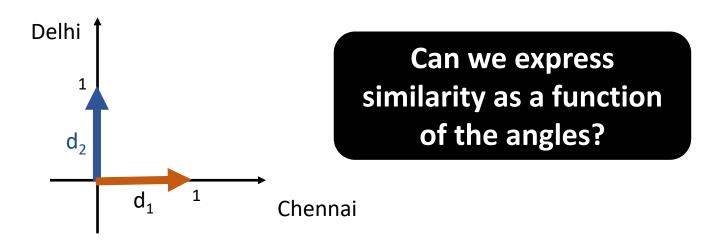
Let query q = "IIIT Sri City".

Let document, $d_1 = "IIIT Sri City"$ and $d_2 = "IIIT Delhi"$.

	IIIT	Sri	City	Delhi
q	1	1	1	0
d_1	1	1	1	0
d_2	1	0	0	1

$$q = (1,1,1,0), d_1 = (1,1,1,0) \text{ and } d_2 = (1,0,0,1)$$

Quiz


Considering the following vectors:

	IIIT	Sri	City	Delhi
q	1	1	1	0
d_1	1	1	1	0
d_2	1	0	0	1

- What is the Natural Language (NL) equivalent of (0,1,1,0)?
- What is the vector for Delhi?

Similarity Score

- Assume, we have the following two documents:
 - d₁ = "Chennai"
 - d_2 = "Delhi"
- On a scale of 0-1, how similar are d_1 and d_2 ?
- What is the angle between d₁ and d₂ vectors?

0 - 90 to 1 - 0: How?

	0°	30°	45°	60°	90°
sin	0	1/2	1/√2	√3/2	1
cos	1	√3/2	1/√2	1/2	0
tan	0	1/√3	1	√3	Not defined

Back to Trigonometry: Dot Product

• If a and b are non-unit vectors, what is the cosine of angle between them ($\cos \Theta$)?

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)$$

$$(or)$$

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

Example

Let query q = "BITS Pilani".

Let document, $d_1 = "BITS Pilani Goa Campus"$ and $d_2 = "IIIT Delhi"$.

	BITS	Pilani	Goa	Campus	IIIT	Delhi
q	1	1	0	0	0	0
d_1	1	1	1	1	0	0
d_2	0	0	0	0	1	1

In our VSM, q = (1,1,0,0,0,0), $d_1 = (1,1,1,1,0,0)$ and $d_2 = (0,0,0,0,1,1)$

similarity(d₁, q) =
$$\frac{d_1 \cdot q}{||d_1|| ||q||} = \frac{1.1 + 1.1}{\sqrt{1^2 + 1^2 + 1^2} + 1^2} = 0.71.$$

similarity(d₂, q) = $\frac{d_2 \cdot q}{||d_2|| ||q||} = 0.$

An Assumption

More frequent appearance of a query term implies higher document relevance.

Which of the Following are Sets?

- {1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 10, 11, 12, 13}
- {A, B, C, D, E, F, G, H, I, I, J, K, L, M, N, O}
- {apple, banana, orange, apple, banana, orange}

tamil actor

Bag

- {1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 10, 11, 12, 13}
- {A, B, C, D, E, F, G, H, I, I, J, K, L, M, N, O}
- {apple, banana, orange, apple, banana, orange}

Set of Words Representation

- "IIIT Sri City"
- "IIIT Sri City, Sri City" → {IIIT, Sri, City}
- → {IIIT, Sri, City}
- → {IIIT, Sri, City}

 (Assuming, we ignore the punctuations)

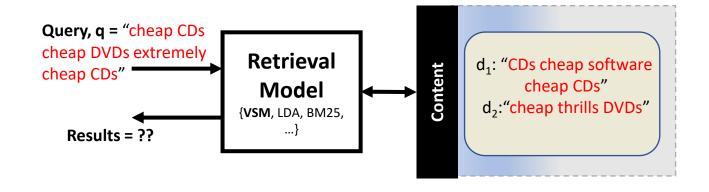
	IIIT	Sri	City
q	1	1	1

Bag of Words Representation

"IIIT Sri City"

- → {IIIT, Sri, City}
- "IIIT Sri City, Sri City" → [IIIT, Sri, Sri, City, City]

IIIT Sri City


IIIT Sri City, Sri City

	IIIT	Sri	City
q	1	1	1

	IIIT	Sri	City
q	1	2	2

Leads to different vectors

Which Document to Retrieve?

	cheap	CDs	DVDs	extremely	software	thrills	
q	3	2	1	1	0	0	
d_1	2	2	0	0	1	0	$\sin(q,d_1) = 0.86$
d_2	1	0	1	0	0	1	- $sim(q,d_2) = 0.59$

Story 3

We know a lot about Trees!

Popular Interview Questions

How can you find if a given string S is a substring of another string T?

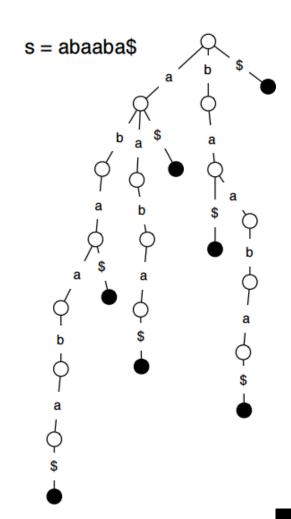
How can you find the number of times S occurs in T?

Is S a suffix of T?

Find the longest repeating substring of T.

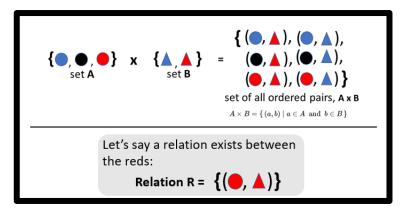
Given two strings X and Y, find the longest common substring of X and Y.

Processing Strings with Suffix Trees

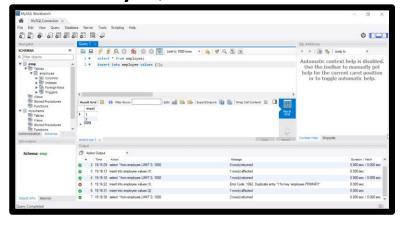

How can you find if a given string S is a substring of another string T?

How can you find the number of times S occurs in T?

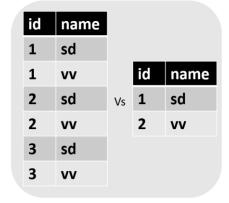
Is S a suffix of T?

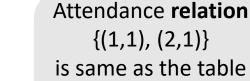

Find the longest repeating substring of T.

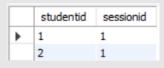
Given two strings X and Y, find the longest common substring of X and Y.



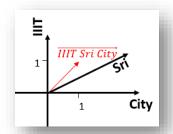
Summary: Relational Model


What is a Relation?



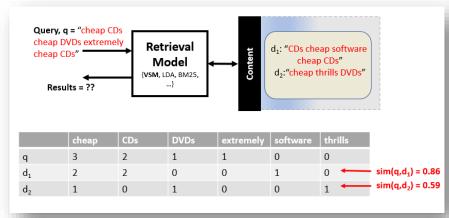

MySQL - An RDBMS

Relational Data Model

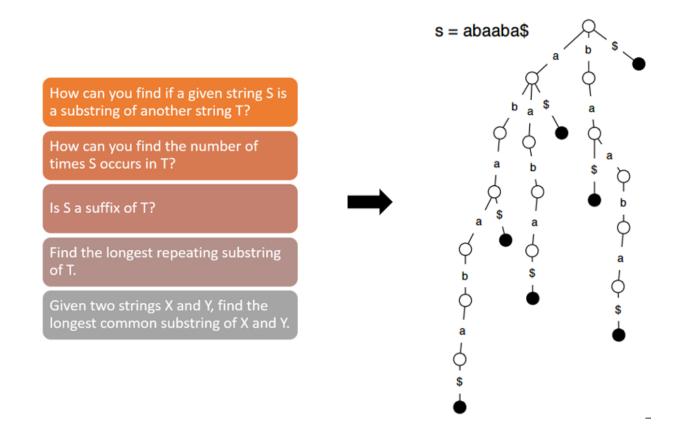


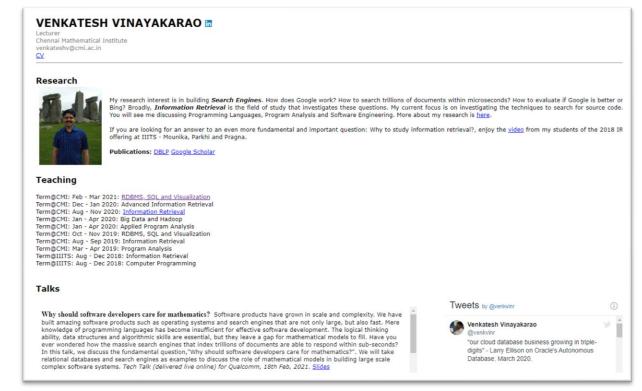
Summary: Vector Space Model

Model Documents as Vectors



Compute Similarity


$$\cos(\theta) = \frac{d_j \cdot q}{||d_j|| \, ||q||}$$



A Worked-Out Example

Summary: Suffix Trees

Thank You

venkateshv@cmi.ac.in

This slide deck is available at http://vvtesh.co.in/.