The Magic of Models A Case of Vector Space Model in Web Search

Venkatesh Vinayakarao

venkateshv@cmi.ac.in http://vvtesh.co.in

Research Science Initiative, Chennai (RSIC) Chennai Mathematical Institute

Simplicity boils down to two steps. Identify the essential. Eliminate the rest. –Leo Babauta.

Venkatesh Vinayakarao (Vv)

How to tame complexity?

Can we learn from the world around us?

How to get All India Rank 1 in JEE?

How did we humans build this?

We could build these too!

How to tame complexity?

Can we learn from the world around us?

Taming Complexity

		Contents					
	For	eword	iii				
	Preface						
1.	Rea	l Numbers	1				
	1.1	Introduction	1				
	1.2	Euclid's Division Lemma	2				
	1.3	The Fundamental Theorem of Arithmetic	7				
	1.4	Revisiting Irrational Numbers	11				
	1.5	Revisiting Rational Numbers and Their Decimal Expansions	15				
	1.6	Summary	18				
2.	Poly	ynomials	20				
	2.1	Introduction	20				
	2.2	Geometrical Meaning of the Zeroes of a Polynomial	21				
	2.3	Relationship between Zeroes and Coefficients of a Polynomial	28				
	2.4	Division Algorithm for Polynomials	33				
	2.5	Summary	37				

Taming Complexity

Key Principles

1. Hierarchy

2. Abstraction

3. Keeping Related Things Together

4. ...

Models

- A model is a representation of an *idea*, an *object*, a *process* or even a *system*
- Used as tools to understand (define, quantify, visualize, ...) the real world.

Decision Tree Model

Data Set Risk Age Car Type 23 Family High High 17 Sports 43 Sports High Family 68 Low 32 Truck Low 20 Family High

Question: What is the risk (high or low) if age is below 25?

Decision Tree

Magic of Models

A Bag of Words Model for Search Engines

Search Engines

Simple Retrieval Problem

- A collection with 5 documents having the following contents
 - d1: IIT Madras
 - d2: IIT Delhi
 - d3: IIT Kanpur
 - d4: IIT Goa
 - d5: IIT Bombay
- Query is
 - IIT Madras
- Which **document** will you match and why?

The Problem: How to Build a Retrieval System?

One (bad) Approach

- First match the term IIT.
 - Filter out documents that contain this term.
- Next match the term Madras.
 - Filter out documents that contain this term.

Multiple iterations! Quiz: Can we do better?

A Better Approach

Revisiting Vectors

Vectors

Geometric entity which has magnitude and direction

If (x,y) is our vector of interest, this figure shows A
vector = (1,1).

How is (2,3) Different?

Simple Retrieval System

What is (1,1,1) ?

Remember!

A number is just a mathematical object. We give meaning to it!

Sentences are Vectors

• "Chennai City" as a vector

Sentences are Vectors

"Great Chennai City" is a 3-dimensional vector

Sentences are Vectors

• On this 3D space, "Great City" vector will lie on the x (City) and z (Great) plane. "Great City" is (1,0,1).

Natural Language Phrases as Vectors

Let query q = "IIT Delhi".

Let document, $d_1 = "IIT Madras"$ and $d_2 = "IIT Delhi"$.

	IIT	Delhi	Madras
q	1	1	0
d ₁	1	0	1
d ₂	1	1	0

q = (1,1,0), d_1 = (1,0,1) and d_2 = (1,1,0)

Quiz

• Considering the following vectors:

	IIIT	Sri	City	Delhi
q	1	1	1	0
d ₁	1	1	1	0
d ₂	1	0	0	1

- What is the Natural Language (NL) equivalent of (0,1,1,0) ?
- What is the NL equivalent of (1,0,0,1)?
- What is the vector for Delhi?

Similarity Score

- D1 = "Chennai"
- D2 = "Delhi"

- Quiz
 - What is the angle between D1 and D2 vectors?
 - On a scale of 0 1, how similar are D1 and D2?

0 – 90 to 1 – 0: How?

	0 °	30°	45°	60°	90°
sin 0	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined

Back to Trigonometry: Dot Product

• If x and y are non-unit vectors, what is the cosine of angle between them (cos Θ)?

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)$$

Cosine Similarity =
$$cos(\theta) = \frac{a.b}{||a|| ||b||}$$

Matching Documents to Queries

 Document as a vector of termoccurrence

 $d_j = (w_{1j}, w_{2j}, \dots, w_{nj})$

 Query as a vector of termoccurrence

$$q = (w_{1q}, w_{2q}, \dots, wmq)$$

 Similarity between these vectors can be represented as

Cosine Similarity =
$$\cos(\theta) = \frac{d_j \cdot q}{||d_j|| ||q||}$$

Example

Let query q = "BITS Pilani".

Let document, $d_1 =$ "BITS Pilani Goa Campus" and $d_2 =$ "IIIT Delhi".

	BITS	Pilani	Goa	Campus	IIIT	Delhi
q	1	1	0	0	0	0
d ₁	1	1	1	1	0	0
d ₂	0	0	0	0	1	1

In our VSM, q = (1,1,0,0,0,0), d_1 = (1,1,1,1,0,0) and d_2 = (0,0,0,0,1,1)

similarity(d₁, q) =
$$\frac{d_1 \cdot q}{||d_1|| \, ||q|||} = \frac{1 \cdot 1 + 1 \cdot 1}{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2 + 1^2}} = 0.71.$$

similarity(d₂, q) = $\frac{d_2 \cdot q}{||d_2|| \, ||q|||} = 0.$

Which of the Following are Sets?

- {1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 10, 11, 12, 13}
- {A, B, C, D, E, F, G, H, I, I, J, K, L, M, N, O}
- {apple, banana, orange, apple, banana, orange}

Bag

- {1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 10, 11, 12, 13}
- {A, B, C, D, E, F, G, H, I, I, J, K, L, M, N, O}
- {apple, banana, orange, apple, banana, orange}

Set of Words Representation

- "IIIT Sri City"
- "IIIT Sri City, Sri City" \rightarrow {IIIT, Sri, City}

 \rightarrow {IIIT, Sri, City}

Leads to same term-document matrix

Bag of Words Representation

- "IIIT Sri City"

\rightarrow {IIIT, Sri, City} • "IIIT Sri City, Sri City" \rightarrow [IIIT, Sri, Sri, City, City]

IIIT Sri City, Sri City **IIIT Sri City** IIIT City Sri Sri Citv 1 1 1 1 2 2 q q

Leads to different term-document matrix

Which Document to Retrieve?

	cheap	CDs	DVDs	extremely	software	thrills	
q	3	2	1	1	0	0	
d ₁	2	2	0	0	1	0	• sim(q,d ₁) = 0.86
d ₂	1	0	1	0	0	1	• sim(q,d ₂) = 0.59

"Abstraction is one of the greatest visionary tools ever invented by human beings to imagine, decipher, and depict the world." Jerry Saltz