
I can't pass an extremely competitive
test to become a surgeon. But you give
me any operation on a heart. I can
perhaps do much better than most
people. I am like an artist. Don't expect
me to compete in an exam. Give me the
job and I will show you how good I am.
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A Relation as a Data Model

• Let the set, id = {1,2,3}

• Let the set, names = {vv, sd}

• What is id x names?

• We have a relation if we assign a 
sequential id to each name.
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id name

1 sd

2 vv

id name

1 sd

1 vv

2 sd

2 vv

3 sd

3 vv

… and thus we had the relational database.



An Entity-Relationship Design

312Source: https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

DB Designs:
• Can get too complex!
• May become too 

hard to maintain!!

https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design


Key Challenges of Relational DB

• Schema needs to be defined.

• Maintenance becomes harder over time.

• Impedance mismatch problem.

• Does not scale out by design.

• ACID Transactions – Consistency Vs. Availability 
Trade-off.
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Impedance Mismatch
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DB Design
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How will you design the 
DB for this content?

Personal Info

Academic Profile

Employment



Impedance Mismatch Problem
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One unit
Multiple Tables

Intermediate Solution: Object Relational Mapping (ORM)



Object Relational Mapping

317

Object

Multiple Tables

A Single Person’s Data

Person
Object

(Instance of a 
Person Class)

Personal Info

Academic Profile

Employment

Hibernate Framework, Java Data Objects, … and 
many other ORM frameworks emerged.



Scaling Out
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Table Joins Using MapReduce

• How would you do it?
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Map-side 
Join

Join is performed by 
the mapper. 

Reduce-side 
Join

Join is performed by 
the reducer. 

Table joins are expensive. So, new solutions 
emerged. Google BigTable, Amazon Dynamo… 



Join Pattern

320See https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html


A New Movement was Born

• We needed a
• Not only relational

• Cluster friendly

• Schemaless

way to store and retrieve data.

• Johan Oskarsson proposed a meetup. He needed a 
twitter hashtag. He used, “nosql”. 
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Transactions, 
Consistency and CAP 
Theorem
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Transaction

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50
6. write(B)

transfer $50 from 
account A to account B

A transaction is a unit of program execution 
that accesses and  possibly updates various 

data items.



Do You See Any Issues Here?
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DB

A transaction that reads 
and writes to disk.



Issues

• Two main issues to deal with:

Failure (hardware failure, 
system crash, software 

defect…)
concurrent execution



Atomicity

• What happens if step 3 is executed 
but not step 6?

• Failure could be due to software or 
hardware

• The system should ensure that 
updates of a partially executed 
transaction are not reflected in the 
database.
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Consistency

• Respect
• Explicitly specified 

integrity constraints

• Implicit integrity 
constraints

• e.g., sum of balances of all 
accounts stays constant
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Consistent State

Consistent State

Temporarily 
Inconsistent 

State



Isolation

• T2 sees an inconsistent database if T1 and T2 are 
concurrent.

T1                                        T2

1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B)

• Isolation can be ensured trivially by running transactions 
serially

• That is, one after the other.   



Durability

• After step 6, the updates to the 
database by the transaction 
must 
• persist even if there are software 

or hardware failures.
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ACID Properties

• Atomicity. Either all operations of the transaction are 
properly reflected in the database or none are.

• Consistency. Execution of a transaction in isolation 
preserves the consistency of the database.

• Isolation. Although multiple transactions may execute 
concurrently, each transaction must be unaware of other 
concurrently executing transactions.  Intermediate 
transaction results must be hidden from other concurrently 
executed transactions.  
• That is, for every pair of transactions Ti and Tj, it appears to Ti that 

either Tj, finished execution before Ti started, or Tj started execution 
after Ti finished.

• Durability.  After a transaction completes successfully, the 
changes it has made to the database persist, even if there 
are system failures. 
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But, as a facebook user, I had a different 
observation…



Eventual Consistency
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• I updated my facebook
status and asked my 
friend to check it out.

• But she found nothing 
there!!!

• Asked her to wait a bit 
and check again.

• Now, she finds it!



Eventual Consistency

• Facebook is eventually consistent.

• Why not use a strongly consistent model?
• Stores Petabytes of data.

• We have Availability vs. Consistency tradeoff.



CAP Theorem

• Concerns while designing distributed systems:
• Consistency –all clients of a data store get responses to 

requests that ‘make sense’. For example, if Client A 
writes 1 and later 2 to location X, Client B cannot read 2 
followed by 1.

• Availability – all operations on a data store eventually 
return successfully. We say that a data store is ‘available’ 
for, e.g. write operations.

• Partition tolerance – if the network stops delivering 
messages between two sets of servers, will the system 
continue to work correctly?
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The CAP Message

If you:

• cannot limit the number of faults, 

• requests can be directed to any 
server, and

• insist on serving every request you 
receive, 

Then:

• you cannot possibly be consistent.
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The Transaction Properties
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Atomicity

Consistency

Isolation

Durability

Basically 
Available

Soft-State

Eventually 
Consistent
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NoSQL DB Types
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Types of NoSQL DB

• Key-Value Stores
• Simplest. Every item is a key-value pair. 
• Examples: Riak, Voldemort, and Redis

• Document DB
• Complex data structures are represented as documents.
• Examples: MongoDB

• Wide-Column Stores
• Data stored as columns.
• Examples: Cassandra and Hbase

• Graph DB
• Examples: Neo4J and HyperGraphDB
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Redis DB – Key Value Store

redis> GET nonexisting

(nil)

redis> SET mykey "Hello"

"OK"

redis> GET mykey

"Hello"

redis> 

340
Read https://redis.io/commands/get

https://redis.io/commands/get


Voldemort DB

341



mongoDB – Document Database

• mongoDB = “Humongous DB”

• Open-source

• Document-based data model

• “High performance, high availability”

• Automatic scaling
• C-P on CAP
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MongoDB vs. RDBMS

• Collection vs. table

• Document vs. row 

• Field vs. column

• Schema-less
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Document Data 
Model

• Documents are a 
natural way to 
represent data.

• Here is a “Person” 
object represented as a 
JSON document.

• MongoDB stores this as 
a BSON document 
(Binary representation 
of JSON).
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A record in MongoDB 
is a document

db.myNewCollection2.insertOne( { x: 1 } )
db.orders.deleteOne({ “name" : “al" } );

Commands

Read https://docs.mongodb.com/manual/core/databases-and-collections/

https://docs.mongodb.com/manual/core/databases-and-collections/


Operations on MongoDB Data
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Columnar Storage

346Read https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html


Columnar Storage
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Same datatype in a block helps in devising efficient compression 
schemes. Therefore, improve storage efficiency.

Assumption: “OLTP transactions typically involve most or all of the 
columns in a row for a small number of records, data warehouse queries 

commonly read only a few columns for a very large number of rows”



Cassandra - Wide-Column Store

• A column is the basic data structure of Cassandra.

• A Column has three values, namely key or column 
name, value, and a time stamp.

• A super column is a special column. stores a map of 
sub-columns.
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Column-Family DB

• Cassandra does not force individual rows to have all 
the columns.

• An example of a Cassandra column family:
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Cassandra Keyspace

• Keyspace is a container for a list of one or 
more column families. 

• A column family, in turn, is a container of a 
collection of rows. 

• Each row contains ordered columns.
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cqlsh
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• Cassandra Query Language Shell

• Note: Cassandra does not join!

• If you need to lookup several tables, create another 
column-family.

[hadoop@linux bin]$ cqlsh
Connected to … Cluster at ….
cqlsh>  select * from emp;



Graph DB

• Facebook, LinkedIn, Google …have connected data.

• It is natural to store and retrieve data as graphs.
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Read https://neo4j.com/blog/why-graph-databases-are-the-future/

Twitter users represented in a graph database model.

https://neo4j.com/blog/why-graph-databases-are-the-future/


redis> GET nonexisting
(nil)
redis> SET mykey "Hello"
"OK"
redis> GET mykey
"Hello"
redis> 

Types of NoSQL datastores

Summary
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Schema-based 
Relational Model -

maintenance 
problems

Impedance 
Mismatch

Scale-up 
Challenges

CAP Theorem

Ke
y-

V
al

u
ec

v

D
o

c-
b

as
ed

C
o

lu
m

n
ar

 D
B

G
ra

p
h

 D
B



Thank You
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