
I can't pass an extremely competitive
test to become a surgeon. But you give
me any operation on a heart. I can
perhaps do much better than most
people. I am like an artist. Don't expect
me to compete in an exam. Give me the
job and I will show you how good I am.

Venkatesh Vinayakarao (Vv)

NoSQL DB

Venkatesh Vinayakarao
venkateshv@cmi.ac.in

http://vvtesh.co.in

Chennai Mathematical Institute

https://vvtesh.sarahah.com/

The cost of managing traditional databases is high. Mistakes made during routine
maintenance are responsible for 80 percent of application downtime. – Dev Ittycheria,
MongoDB.

http://vvtesh.co.in/

A Relation as a Data Model

• Let the set, id = {1,2,3}

• Let the set, names = {vv, sd}

• What is id x names?

• We have a relation if we assign a
sequential id to each name.

311

id name

1 sd

2 vv

id name

1 sd

1 vv

2 sd

2 vv

3 sd

3 vv

… and thus we had the relational database.

An Entity-Relationship Design

312Source: https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

DB Designs:
• Can get too complex!
• May become too

hard to maintain!!

https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

Key Challenges of Relational DB

• Schema needs to be defined.

• Maintenance becomes harder over time.

• Impedance mismatch problem.

• Does not scale out by design.

• ACID Transactions – Consistency Vs. Availability
Trade-off.

313

Impedance Mismatch

314

DB Design

315

How will you design the
DB for this content?

Personal Info

Academic Profile

Employment

Impedance Mismatch Problem

316

One unit
Multiple Tables

Intermediate Solution: Object Relational Mapping (ORM)

Object Relational Mapping

317

Object

Multiple Tables

A Single Person’s Data

Person
Object

(Instance of a
Person Class)

Personal Info

Academic Profile

Employment

Hibernate Framework, Java Data Objects, … and
many other ORM frameworks emerged.

Scaling Out

318

Table Joins Using MapReduce

• How would you do it?

319

Map-side
Join

Join is performed by
the mapper.

Reduce-side
Join

Join is performed by
the reducer.

Table joins are expensive. So, new solutions
emerged. Google BigTable, Amazon Dynamo…

Join Pattern

320See https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

A New Movement was Born

• We needed a
• Not only relational

• Cluster friendly

• Schemaless

way to store and retrieve data.

• Johan Oskarsson proposed a meetup. He needed a
twitter hashtag. He used, “nosql”.

321

Transactions,
Consistency and CAP
Theorem

322

Transaction

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50
6. write(B)

transfer $50 from
account A to account B

A transaction is a unit of program execution
that accesses and possibly updates various

data items.

Do You See Any Issues Here?

324

DB

A transaction that reads
and writes to disk.

Issues

• Two main issues to deal with:

Failure (hardware failure,
system crash, software

defect…)
concurrent execution

Atomicity

• What happens if step 3 is executed
but not step 6?

• Failure could be due to software or
hardware

• The system should ensure that
updates of a partially executed
transaction are not reflected in the
database.

326

Consistency

• Respect
• Explicitly specified

integrity constraints

• Implicit integrity
constraints

• e.g., sum of balances of all
accounts stays constant

327

Consistent State

Consistent State

Temporarily
Inconsistent

State

Isolation

• T2 sees an inconsistent database if T1 and T2 are
concurrent.

T1 T2

1. read(A)

2. A := A – 50

3. write(A)
read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B)

• Isolation can be ensured trivially by running transactions
serially

• That is, one after the other.

Durability

• After step 6, the updates to the
database by the transaction
must
• persist even if there are software

or hardware failures.

329

ACID Properties

• Atomicity. Either all operations of the transaction are
properly reflected in the database or none are.

• Consistency. Execution of a transaction in isolation
preserves the consistency of the database.

• Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate
transaction results must be hidden from other concurrently
executed transactions.
• That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

• Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there
are system failures.

331

But, as a facebook user, I had a different
observation…

Eventual Consistency

332

• I updated my facebook
status and asked my
friend to check it out.

• But she found nothing
there!!!

• Asked her to wait a bit
and check again.

• Now, she finds it!

Eventual Consistency

• Facebook is eventually consistent.

• Why not use a strongly consistent model?
• Stores Petabytes of data.

• We have Availability vs. Consistency tradeoff.

CAP Theorem

• Concerns while designing distributed systems:
• Consistency –all clients of a data store get responses to

requests that ‘make sense’. For example, if Client A
writes 1 and later 2 to location X, Client B cannot read 2
followed by 1.

• Availability – all operations on a data store eventually
return successfully. We say that a data store is ‘available’
for, e.g. write operations.

• Partition tolerance – if the network stops delivering
messages between two sets of servers, will the system
continue to work correctly?

334

The CAP Message

If you:

• cannot limit the number of faults,

• requests can be directed to any
server, and

• insist on serving every request you
receive,

Then:

• you cannot possibly be consistent.

335

The Transaction Properties

336

Atomicity

Consistency

Isolation

Durability

Basically
Available

Soft-State

Eventually
Consistent

337

NoSQL DB Types

338

Types of NoSQL DB

• Key-Value Stores
• Simplest. Every item is a key-value pair.
• Examples: Riak, Voldemort, and Redis

• Document DB
• Complex data structures are represented as documents.
• Examples: MongoDB

• Wide-Column Stores
• Data stored as columns.
• Examples: Cassandra and Hbase

• Graph DB
• Examples: Neo4J and HyperGraphDB

339

Redis DB – Key Value Store

redis> GET nonexisting

(nil)

redis> SET mykey "Hello"

"OK"

redis> GET mykey

"Hello"

redis>

340
Read https://redis.io/commands/get

https://redis.io/commands/get

Voldemort DB

341

mongoDB – Document Database

• mongoDB = “Humongous DB”

• Open-source

• Document-based data model

• “High performance, high availability”

• Automatic scaling
• C-P on CAP

342

MongoDB vs. RDBMS

• Collection vs. table

• Document vs. row

• Field vs. column

• Schema-less

343

Document Data
Model

• Documents are a
natural way to
represent data.

• Here is a “Person”
object represented as a
JSON document.

• MongoDB stores this as
a BSON document
(Binary representation
of JSON).

344

A record in MongoDB
is a document

db.myNewCollection2.insertOne({ x: 1 })
db.orders.deleteOne({ “name" : “al" });

Commands

Read https://docs.mongodb.com/manual/core/databases-and-collections/

https://docs.mongodb.com/manual/core/databases-and-collections/

Operations on MongoDB Data

345

Columnar Storage

346Read https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Columnar Storage

347

Same datatype in a block helps in devising efficient compression
schemes. Therefore, improve storage efficiency.

Assumption: “OLTP transactions typically involve most or all of the
columns in a row for a small number of records, data warehouse queries

commonly read only a few columns for a very large number of rows”

Cassandra - Wide-Column Store

• A column is the basic data structure of Cassandra.

• A Column has three values, namely key or column
name, value, and a time stamp.

• A super column is a special column. stores a map of
sub-columns.

348

Column-Family DB

• Cassandra does not force individual rows to have all
the columns.

• An example of a Cassandra column family:

349

Cassandra Keyspace

• Keyspace is a container for a list of one or
more column families.

• A column family, in turn, is a container of a
collection of rows.

• Each row contains ordered columns.

350

cqlsh

351

• Cassandra Query Language Shell

• Note: Cassandra does not join!

• If you need to lookup several tables, create another
column-family.

[hadoop@linux bin]$ cqlsh
Connected to … Cluster at ….
cqlsh> select * from emp;

Graph DB

• Facebook, LinkedIn, Google …have connected data.

• It is natural to store and retrieve data as graphs.

352

Read https://neo4j.com/blog/why-graph-databases-are-the-future/

Twitter users represented in a graph database model.

https://neo4j.com/blog/why-graph-databases-are-the-future/

redis> GET nonexisting
(nil)
redis> SET mykey "Hello"
"OK"
redis> GET mykey
"Hello"
redis>

Types of NoSQL datastores

Summary

353

Schema-based
Relational Model -

maintenance
problems

Impedance
Mismatch

Scale-up
Challenges

CAP Theorem

Ke
y-

V
al

u
ec

v

D
o

c-
b

as
ed

C
o

lu
m

n
ar

 D
B

G
ra

p
h

 D
B

Thank You

354

