| can't pass an extremely competitive
test to become a surgeon. But you give
me any operation on a heart. | can
perhaps do much better than most
people. | am like an artist. Don't expect
me to compete in an exam. Give me the
job and | will show you how good | am.

https://vvtesh.sarahah.com/

NoSQL DB

Venkatesh Vinayakarao

venkateshv@cmi.ac.in
http://vvtesh.co.in

Chennai Mathematical Institute

The cost of managing traditional databases is high. Mistakes made during routine
maintenance are responsible for 80 percent of application downtime. — Dev Ittycheria,
MongoDB.

Venkatesh Vinayakarao (Vv)

http://vvtesh.co.in/

A Relation as a Data Model

* Let the set, id = {1,2,3} ﬂm

* Let the set, names = {vv, sd} 1 sd
* What is id x names? 1 w
* We have a relation if we assign a SEC
sequential id to each name. 2 w
i Lname ——
3 w

1 sd

2 w

... and thus we had the relational database.

311

An Entity-Relationship Design

DB Designs:

Can get too complex!
May become too

hard to maintain!!

312

Source: https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

Key Challenges of Relational DB

* Impedance mismatch problem.
* Does not scale out by design.

* ACID Transactions — Consistency Vs. Availability
Trade-off.

313

Impedance Mismatch

314

DB Design

APPLICATION FOR EMPLOYMENT
PERSOMNAL INFORMATION DATE
NAME (LAST NAME FIRST) PHONE NO.

PRESENT ADDRESS

PERMANENT ADDRESS Pe rso n a I I nfo

SOCIAL SECURITY NO. REFERRED BY

DESIRED POSITION

TITLE OF POSITION DESIRED SALARY/WAGE DATE YOU CAN START
ARE YOU CURRENTLY MAY WE CONTACT YOUR
| EMPLOYED? PRESEMT EMPLOYER. |F

HAVE YOU EVER APPLIED TO THIS

COMPANY AND IF SO, WHENT

EDUCATIONAL BACKGROUND

SCHOOL NAME DATES GRADUATED? SUBJECTS?
& LOCATION (IF APP.) (IF AFP.}

How will you design the
_Academic Profile DB for this content?

BUSINESS, TRADE OR
CORRESPONDENCE
SCHOOL(S)

EMPLOYMENT HISTORY

DATE MAME & ADDRESS ENDING FPOSITION REASON FOR
MONTH & YEAR OF EMPLOYER[S) SALARY HELD LEAVING

FROM

TO

o Employment

TO

FROM

TO

REFERENCES GIVE BELOW THE NAMES OF THREE PERSONS NOT RELATED TO YOU, WHOM YOU HAVE KNOWN AT LEAST 1 YEAR
MNAME ADDRESS & PHOMNE NO. TYPE OF BUSINESS YEARS KNOWN

315

Impedance Mismatch Problem

Multiple Tables
One unit P

—

Intermediate Solution: Object Relational Mapping (ORM)

316

Object Relational Mapping

Multiple Tables

Personal Info

JDIE —>

Person Academic Profile
Object
(Instance of a
Person Class)

A Single Person’s Data Employment

Hibernate Framework, Java Data Objects, ... and

many other ORM frameworks emerged.

317

Scaling Out

Table Joins Using MapReduce

* How would you do it?

Map-side Reduce-side
Join Join

Join is performed by Join is performed by
the mapper. the reducer.

Table joins are expensive. So, new solutions
emerged. Google BigTable, Amazon Dynamo...

319

Join Pattern

Hama Salary Dept 1D
Sumit Te0e0e0e0 5 Empfﬂm Tﬂg" Emp
Dilip 750000 z Key=2, Value=(Dilip, 750000, 2)
Amar 500000 5 ,
Abhijit 800000 5 .
]
Tag: Department
S Hame Key=5, Value=(5, Marketing)

2 Marketing
5 Finance Shufﬂe, Sort
3 Sales Dﬂparh'nenl

- N

Key=2, {Value=(Dilip, 750000, 2), Tag:Employee}

{Value=(2, Marketing), Tag: Department}
l' —— G— ')

Tasks .

Key=5, {Value=(Sumit, 700000, 5), TagEmployee} |
: {Value=(Amar, 500000, 5), Tag:Employee}

@ Final Output {Value=(Abhijit, 800000, 5), Tag:Employee}

{Value=(5, Sales), Tag: Department}

[Key=2, {Value=(Dilip, 750000, Marketing)}] b

{Malue={Amar, 500000, Finance)}

Key=5, {Value=({Sumit, 700000, Finance)}
{Value=(Abhijit, 800000, Finance}

@ guru99.com

See https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.htm] 320

https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

A New Movement was Born

* We needed a
* Not only relational
 Cluster friendly
* Schemaless

way to store and retrieve data.

* Johan Oskarsson proposed a meetup. He needed a
twitter hashtag. He used, “nosqgl”.

321

Transactions,
Consistency and CAP
Theorem

322

Transaction

read(A)
. A:=A-50

erte(A) transfer $50 from
read(B) account A to account B

B:=B+50
write(B)

R

A transaction is a unit of program execution

that accesses and possibly updates various
data items.

Do You See Any Issues Here?

?

read(A)
A:=A-50

write(A) -
read(B) u
B:=B+50

write(B)

ok wnNneE

A transaction that reads
and writes to disk.

324

lssues

e Two main issues to deal with:

¢ 0% e

1. read(A) 1. read(A)
2. A:=A-50
3. write(A) C_ 3 2. A -'—A -50 -
—_— 4. read(B) u 3. write(A)
5. B:=B+50 4. read(B)
6. write(B) 5. B:=B+50
6. write(B)

Failure (hardware failure,

system crash, software concurrent execution
defect...)

Atomicity

 What happens if step 3 is executed
but not step 6?

e Failure could be due to software or 1. read(A)
hardware 2. A:=A-50
* The system should ensure that 3. write(A)
updates.of a partially execute-d 4. read(B)
transaction are not reflected in the
database. 5. B:=B+50
6. write(B)

326

CO ﬂ S I Ste ﬂ Cy Consistent State

* Respect \

* Explicitly specified - 1. read(A)
integrity constraints 2. A=A-50
* Implicit integrity e

constraints Temporarily | 3. write(A)
Inconsistent -

State 4. read(B)
5. B:=B+50

6. write(B)

|

Consistent State

e e.g., sum of balances of all
accounts stays constant

Isolation

e T2 sees an inconsistent database if T1 and T2 are
concurrent.

T1 T2
. read(A)
.A:=A-50
3. write(A)

N =

read(A), read(B), print(A+B)
4. read(B)
5.B:=B+50
6. write(B)

* |solation can be ensured trivially by running transactions
serially

 Thatis, one after the other.

Durability

e After step 6, the updates to the
database by the transaction

1. read(A)
must !
* persist even if there are software 2. A " A-50
or hardware failures. 3. write(A)
4. read(B)
5. B:=B+50
6. write(B)

329

ACID Properties

Atomicity. Either all operations of the transaction are
properly reflected in the database or none are.

Consistency. Execution of a transaction in isolation
preserves the consistency of the database.

Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate
transaction results must be hidden from other concurrently
executed transactions.

* That s, for every pair of transactions T;and T, it appears to T, that
either T, finished execution before T; started, or T, started execution
after T, finished.

Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there
are system failures.

But, as a facebook user, | had a different

observation...

331

Eventual Consistency

* | updated my facebook

status and asked my

From Nalopakhyanam... some 11st Std memories!

friend to check it out. ﬁtﬂ:mﬁnj‘g:wﬁm
. " SHATATH ﬁiﬁlﬁ‘lﬁl J9q1 19
e But she found nothing e = s
therel!!l

* Asked her to wait a bit
and check again.
* Now, she finds it!

Eventual Consistency

* Facebook is eventually consistent.

* Why not use a strongly consistent model?
» Stores Petabytes of data.
* We have Availability vs. Consistency tradeoff.

CAP Theorem

* Concerns while designing distributed systems:

* Consistency —all clients of a data store get responses to
requests that ‘make sense’. For example, if Client A
writes 1 and later 2 to location X, Client B cannot read 2
followed by 1.

 Availability — all operations on a data store eventually
return successfully. We say that a data store is ‘available
for, e.g. write operations.

* Partition tolerance — if the network stops delivering
messages between two sets of servers, will the system
continue to work correctly?

)

334

The CAP Message

If you:
e cannot limit the number of faults,

* requests can be directed to any
server, and

* insist on serving every request you
receive, Choose

Any
Then:

j/ TWO'
. . €ncy
* you cannot possibly be consistent.

Availabij l
ity

The Transaction Properties

a) 4)

Atomicity Basically

Available
Consistency

> Soft-State

Isolation

Eventually
Durability Consistent

/

336

Consistent,
Available (CA)
Systems have

trouble with /

partitions /
and typically dedl

Pick Two

Consistent, Partition-Tolerant (CP)
Systems have trouble with availability
while keeping data consistent across
partitioned nodes

with it with
replication

Available, Partition-
Tolerant (AP) Systems
achieve "eventual
consistency” through
replication and
verification

P

NoSQL DB Types

Types of NoSQL DB

e Key-Value Stores

* Simplest. Every item is a key-value pair.
* Examples: Riak, Voldemort, and Redis

* Document DB

* Complex data structures are represented as documents.
* Examples: MongoDB

e Wide-Column Stores
e Data stored as columns.
* Examples: Cassandra and Hbase

* Graph DB
 Examples: Neo4J) and HyperGraphDB

339

Redis DB — Key Value Store

redis> GET nonexisting
(nil)

redis> SET mykey "Hello"
1OK"

redis> GET mykey
"Hello"

redis>

Read https://redis.io/commands/get

340

https://redis.io/commands/get

Voldemort DB

> bin/voldemort-shell.sh test tcp://localhost:666
Established connection to test wvia tcp://localhos
> put "hello" "world"

> get "hello"

version(0:1): "world"

o
L:6666

> delete "hello"
> get "hello"
null

> help

> exlt

k k thx bye.

341

mongoDB — Document Database

* mongoDB = “Humongous DB”
* Open-source
* Document-based data model
* “High performance, high availability”
* Automatic scaling
* C-P on CAP

342

MongoDB vs. RDBMS

* Collection vs. table
* Document vs. row
* Field vs. column

* Schema-less

343

=

name: "sue”, <«+—— field: value

age: 26, <— field: value
Document Data status: "A", <«— field: value
groups: ["news”, "sports”] <«—— field: value

Model

(-

A record in MongoDB
is a document

Documents are a
natural way to ¢ o
represent data. ‘

<K
Here is a “Person” or ag name: "al”,
object represented as a 3 st age: 18,
JSON document. _Bfl status: D",

‘ groups: ["politics”, "news"”]

MongoDB stores this as }
a BSON document Collection

(Binary representation

of JSON).
db.myNewCollection2.insertOne({ x: 1 })

db.orders.deleteOne({ “name" : “al" });
Commands

Read https://docs.mongodb.com/manual/core/databases-and-collections/

344

https://docs.mongodb.com/manual/core/databases-and-collections/

Operations on MongoDB Data

Collection

v
db.orders.distinct("cust_id")

c
cust_id: "A123",
amount: 508,
status: "A”
'}
{
cust_id: "A123",
amount: 258,
status: "A"
}
- : - P ["A123", "B212"]
c distinct
cust_id: "B212",
amount: 208,
status: "A"
}
{
cust_id: "A123"
amount: 38@,
status: "D"
}

orders 345

Columnar Storage

S5N Name Age Addr City S5t
101259797 SMITH 88 [899 FIRST ST JUNO AL
892375862 CHIN a7 16137 MAIN ST POMOMA CA
318370701 HANDLU 12 42 JUNE ST CHICAGO 1L

101259797 | SMITH| 88| 899 FIRST ST |JUNQ|AL |B92375862 | CHIN |37 | 16137 MAIN ST |POMONA |CA |318370701 [HANDU (12 (42 JUME ST|CHICAGO|IL

Block 1 Block 2 Elock 3
SSN Name Age Addr City st
101259797 SMITH aa BBB FIRST ST JUND AL
8923758862 CHIN a7 16137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGO IL

‘ 101258797 |802375862 | 318370701 | 468248180 | 378568310 | 2313466875 | 317346551 | TT0336528 | 277332171 | 455124508 | 735885647 | 387586301

Block 1

Read https://docs.aws.amazon.com/redshift/latest/dg/c_columnar storage disk mem mgmnt.html 346

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Columnar Storage

SSN Name Age Addr City st
101259797 SMITH 88 899 FIRST ST JUNO AL
892375862 CHIN 37 16137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGO IL

101258797 | 802375862 | 318370701 468248180 | 378568310 | 231346875 | 317346551 | 7703368528 | 277332171 | 455124508 | TA5B85647 | 387586301

Block 1

Same datatype in a block helps in devising efficient compression
schemes. Therefore, improve storage efficiency.

Assumption: “OLTP transactions typically involve most or all of the

columns in a row for a small number of records, data warehouse queries
commonly read only a few columns for a very large number of rows”

Cassandra - Wide-Column Store

A column is the basic data structure of Cassandra.

* A Column has three values, namely key or column
name, value, and a time stamp.

name : byte[] | value : byte[] | clock : clock(]

e A super column is a special column. stores a map of
sub-columns.

name : byte(] cols : map<byte[],
column=

348

Column-Family DB

e Cassandra does not force individual rows to have all
the columns.

* An example of a Cassandra column family:

Row Key 1

Column 1

Column 2

Column 3

v

v

Y

Value 1

Value 2

Value 3

Row Key 2

Column 1

Value 1

Column 4

Value 4

349

Cassandra Keyspace

» Keyspace is a container for a list of one or
more column families.

* A column family, in turn, Is a container of a
collection of rows.

« Each row contains ordered columns.

/ Keyspace \

/ Column Family \ (Column Family \

\\ i j/ 350

cqlsh

e Cassandra Query Language Shell

[hadoop@linux bin]$ cqlsh
Connected to ... Cluster at
cqlsh> select * from emp;

* Note: Cassandra does not join!

* If you need to lookup several tables, create another
column-family.

351

Graph DB

* Facebook, Linkedln, Google ...have connected data.
* It is natural to store and retrieve data as graphs.

FOLLOWS _
FOLLOWS

name: Johan name: Emil

&
<

Twitter users represented in a graph database model.

Read https://neo4dj.com/blog/why-graph-databases-are-the-future/

352

https://neo4j.com/blog/why-graph-databases-are-the-future/

Summary

Impedance
Mismatch

Multiple Tables

Object

Persan
Object
(Instance of a
Person Class)

A single Persan’s Data

Consistent,
Available (CA)
Systems have
trouble with
partitions

and typically dedl

Available, Partition-
Tolerant (AP) Systems
achieve "eventual

Consistent, Partition-Tolerant (CP) consistency” through
Systems have trouble with availability replication and

while keeping data consistent across verification

with it with partitioned nodes |

replication

Schema-based
Relational Model -
maintenance
problems Scale-up

Challenges

CAP Theorem

Key-Valuecv

/

Types of NoSQL datastores \

¥
db.orders.distinct("cust_id")

cust_id: "A123
amount: 500,
status: "A"

ICnlumni I lca«mz I IColumnS |

redis> GET nonexisting
(nil)

redis> SET mykey "Hello"
IIOKll

redis> GET mykey
"Hello"

redis> a redis

i
l“

IV-IuH | [vnu-z I Ivuu-z I

|Vi|n1 I |Vl|u|l I
‘o

cust_id: "A123
amount: 250,
status: "A"

—p ["A123", "B212"]

distinct

cust_id: "B212
amount: 200
status: "A"

Doc-based

'mon 0
&

Columnar DB
g
g

orders

Thank You

