A MODEL FOR
DISTRIBUTED COMPUTING

Venkatesh Vinayakarao

venkateshv@cmi.ac.in
http://vvtesh.co.in

Chennai Mathematical Institute

Data is the new oil. - Clive Humby, 2006.

Venkatesh Vinayakarao (Vv)

mailto:venkatesh.v@iiits.in
http://vvtesh.co.in/

A Distributed Computing Model

% No shared memory.

No notion of global clock.

% 7

How to co-ordinate to get a job done?

Space-time diagram of a
distributed execution

e € {internal, send, receive}

//\

€

A Message through a
channel from an
event causes

Causal dependency

-/

el "3 / \/
P> -

N

| 2
p :34 / ‘\ﬁ
4
. /
Concurrent events

A Distributed Execution

For a more complete and formal handling, see https://www.cs.uic.edu/~ajayk/Chapter2.pdf

time ————=

Causal dependencies between
events

x) y - .
ef —ie de.(i=j)N(x<y)
or

X y x ¥ X Y
or

z . AX z z y
def e H: e — ef A & — &

H=U;h; denotes set of all events of process P

ef — €; and €5 — €3 denotes a causal dependency from the figure.

H:(H, —:~) denotes causal precedence relation

Cuts of an execution

Past(e;) = {ei|[Ve; € H, & — ¢ }
| Future(e;) = {ei|Ve; € H, ¢ — e}
C C;

\ 3 4
|| El el
PI o ‘\ \ =
. - T \
e - -=" -\\ 4 -
el e’ e; . € >
p 2 2 2 v N

2 ® \ -~ -

1 2 A ,
e es €3 xk 84 \& ES

P3 o ’ * .3 : ’

™ \ time ——=

Past of C; Future of C,

Note that C, is inconsistent. C, is consistent. Can you see why?

Local and Global States

GS = {ULLS?, U;xSCL™)

/A

Local State Channel State

SC;"*}’ ={mj;| send(mj;) < eX A\ rec(mjj) £ eJ?’}

Thus, channel state SC;"}’ denotes all messages that p; sent upto event e and
which process p; had not received until event ej-f”.

Synchrony

* Synchronous communication model

* On message send, the sender process blocks until the
message has been received.

e Asynchronous
* Non-blocking type.

How to track causality without the notion of
global time?

Let us define a local logical clock

C: H— T <«— Tisatimestamp

e — g — C(E‘;‘) < C{E:,)

Processes with Local Clocks

e34
el3
ell el2 e -
Pl -2 4 .12 Y ed.
eZ2lae22 e23 24 e2>
) —e—
- ® -3
P3 *—o)
e31 e32 33 eZ3
- 2l el
ell ‘..z| el

Virtual Time and Global States of Distributed Systems, Friedemann Mattern.

Total Vs. Partial Order

The Pair ({1,2,3}, <) The Pair ({{}1{1}1{2}1{3}1{112}1{113}1{213}}1 g)

Partially ordered under
A strict total order. the C operation!

Reflexive, Transitive and Anti-symmetric
a<=a g<=p and b<=c a<=b and b<=3a
impliesa<=c impliesa=b

Hasse Diagram

21O B S

Image source: Static Program Analysis, Moller and Schwartzbach

Scalar Time

Scalar Time

| 2 3 R 9

7 & @ >
5 9
1 4 5 7 11
P, ® ® "
3 10
4
1 b
Pj & & -
5 6 7

Cler) < Clg) 7= & — ¢

Not strongly consistent

Scalar Time

4 before 3 111

1 2 3
7 @ .
2
| 11
P} - » -
' /
F‘j & =

C(e) < C(g) #= e — ¢

Not strongly consistent

Vector Time

Vector Time

C i
At i
| H

1 |

Implementing Vector Time? Notice that “between successive
message sends to the same process, only a few entries of the
vector clock at the sender process are likely to change”.

Singhal-Kshemkalyani’s differential technique uses this observation.

Matrix Time

The entire matrix mt; denotes p;'s local view of the global logical time.

mt ik]
2
€1
Pk =
mi e Lf,_,f]
e my
J
P =~
J
ms
e
) & —

~

mi,

In addition, matrix clocks have the following property:
ming(mt;[k,l]) > t = process p; knows that every other process px knows
that p;'s local time has progressed till t.

A Distributed Computing
Algorithm

* Consensus Problem
* All processes have an initial value

* All non-faulty processes must agree on the same (single)
value.

A Distributed Computing
Algorithm

e Consensus Problem
* All processes have an initial value.

* All non-faulty processes must agree on the same (single)
value.

e Setting: Message-Passing, Synchronous.

(global constants)

integer: f; // maximum number of crash failures tolerated
(local variables)

integer: x «—— local value;

(1) Process P; (1 < i < n) executes the Consensus algorithm for up to f crash failures:
(1a) for round from 1 to f + 1 do

(1b) if the current value of x has not been broadcast then

(1c) broadcast(x);

(1d) yj «— value (if any) received from process j in this round;
(1e) x «— min(x, y;);

(1f) output x as the consensus value.

