| can't pass an extremely competitive
test to become a surgeon. But you give
me any operation on a heart. | can
perhaps do much better than most
people. | am like an artist. Don't expect
me to compete in an exam. Give me the
job and I will show you how good | am.

NoSQL DB

Venkatesh Vinayakarao

venkateshv@cmi.ac.in
http://vvtesh.co.in

Chennai Mathematical Institute

The cost of managing traditional databases is high. Mistakes made during routine
maintenance are responsible for 80 percent of application downtime. — Dev Ittycheria,
MongoDB.

Venkatesh Vinayakarao (Vv)

http://vvtesh.co.in/

A Relation as a Data Model
* Let the set, id = {1,2,3} id |name

* Let the set, names = {vv, sd} "1 sd
* What is id x names? 1 w
* We have a relation if we assign a SEEE
sequential id to each name. 2 w
i Lname -
3 w

1 sd

2 v

... and thus we had the relational database.

An Entity-Relationship Design

DB Designs:
* Can get too complex!
 May become too

hard to maintain!!

Source: https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

Key Challenges of Relational DB

* Impedance mismatch problem.
* Does not scale out by design.

* ACID Transactions — Consistency Vs. Availability
Trade-off.

Impedance Mismatch

DB Design

PERSONAL INFORMATION

APPLICATION FOR EMPLOYMENT

DATE

NAME [LAST NAME FIRST)

PHONE NO.

PRESENT ADDRESS

PERMANENT ADDRESS

Personal Info

SOCIAL SECURITY NO.

REFERRED BY

DESIRED POSITION

TITLE OF POSITION

DESIRED SALARY/ WAGE

DATE YOU CAN START

ARE ¥OU CURRENTLY
| EMPLOYED?

MAY WE CONTACT YOUR
PRESENT EMPLOYER, |F

HAVE YOU EVER APPLIED TO THIS
COMPANY AND IF S0, WHEN?

EDUCATIONAL BACKGROUND

SCHOOL NAME
& LOCATION

DATES GRADUATED?
(IF APP.}

SUBJECTS?
(IF APP.]

HIGH SCHOOL

COLLEGE

Academi

le

Prot

BUSINESS, TRADE OR
CORRESPONDENCE

SCHOOL(S)

EMPLOYMENT HISTORY

DATE
MONTH & YEAR

MAME & ADDRESS
OF EMPLOYER(S}

ENDING POSITION
SALARY HELD

REASOMN FOR
LEAVING

FROM

TO

FROM

Employment

TO

FROM

TO

REFERENCES GIVE BELOW THE NAMES OF THREE PERSONS NOT RELATED TO YOU, WHOM YOU HAVE KNOWN AT LEAST 1 YEAR

MNAME

ADDRESS & PHOMNE NO.

TYPE OF BUSINESS

YEARS KNOWN

How will you design the
DB for this content?

Impedance Mismatch Problem

Multiple Tables
One unit P

=

Intermediate Solution: Object Relational Mapping (ORM)

Object Relational Mapping

Multiple Tables

Personal Info

DIE >

Person

Academic Profile

Object

(Instance of a
Person Class)

A Single Person’s Data

Employment

Hibernate Framework, Java Data Objects, ... and

many other ORM frameworks emerged.

Scaling Out

Table Joins Using MapReduce

* How would you do it?

Map-side Reduce-side
Join Join

Join is performed by Join is performed by
the mapper. the reducer.

Table joins are expensive. So, new solutions
emerged. Google BigTable, Amazon Dynamo...

Join Pattern

Name Salary Daopt 1D

— 700000 ; Employee
Dilip TS0000 z

Amar SO0000 5

Abhijit 800000 5

Dept_ID Marme
2 Marketing Map Tasks
5 Finance
3 Salos Department
I' E— —
Tasks

‘ Final Output

[Key=2. {Value=(Dilip, 750000, Marketing)}]

{Value={Amar, 500000, Finance)}

Key=5, {Value=(Sumit, 700000, Finance}}
{Value=(Abhijit, 800000, Finance}

—>

Shuffle, Sort

Tag: Employee

Key=2, Value=(Dilip, 750000, 2)

Tag: Department

Key=5, Value=(5, Marketing)

—

r

Key=2, {Value=(Dilip, 750000, 2), Tag:Employee}
{Value=(2, Marketing), Tag: Department}

=

-

Key=5, {Value=(Sumit, 700000, 5), Tag:Employee} b
{Value=(Amar, 500000, 5), Tag:Employee}
{Value=(Abhijit, 800000, 5), Tag:Employee}
{Value=(5, Sales), Tag: Department}

J

@ guru99.com

See https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html|

https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

A New Movement was Born

* We needed a
* Not only relational
* Cluster friendly
* Schemaless

way to store and retrieve data.

* Johan Oskarsson proposed a meetup. He needed a
twitter hashtag. He used, “nosqgl”.

NoSQL DB Types

Types of NoSQL DB

* Key-Value Stores

e Simplest. Every item is a key-value pair.
* Examples: Riak, Voldemort, and Redis

* Document DB

 Complex data structures are represented as documents.
* Examples: MongoDB

e Wide-Column Stores
e Data stored as columns.
* Examples: Cassandra and Hbase

* Graph DB
* Examples: Neo4J) and HyperGraphDB

Redis DB — Key Value Store

redis> GET nonexisting
(nil)

redis> SET mykey "Hello"
1OK"

redis> GET mykey
"Hello"

redis>

Read https://redis.io/commands/get

https://redis.io/commands/get

Voldemort DB

> bin/voldemort-shell.sh test tcp://localhost:6ee6
Established connection to test via tcp://localhost:cc6b
> put "hello" "world"

> get "hello"

version(0:1): "world"

> delete "hello"

> get "hello"

null

> help

> exit
k k thx bye.

mongoDB — Document Database

* mongoDB = “Humongous DB”
* Open-source
* Document-based data model
e Automatic scaling
 Compromises on Availability (by default)

MongoDB vs. RDBMS

e Collection vs. table
* Document vs. row
e Field vs. column
 Schema-less

=

name: "sue” <«—— field: value

¥

age: 26, <«+—— field: value
Document Data status: "A", <«— field: value
groups: ["news”, "sports”] «—— field: value

Model

!

A record in MongoDB
is a document

Documents are a
natural way to { A
|
represent data. ag na ¢
Here is a “Person” st ag name: "al",
object represented as a) & st age: "8.-”)
JSON document. _Bf status: DY,
S groups: ["politics”, "news"]
MongoDB stores this as }
a BSON document C :
ollection

(Binary representation

of JSON).
db.myNewCollection2.insertOne({x:1})

db.orders.deleteOne({ “name" : “al" });
Commands

Read https://docs.mongodb.com/manual/core/databases-and-collections/

https://docs.mongodb.com/manual/core/databases-and-collections/

db.createCollection("personal_information")
db.personal _information.insertOne({
name: "Venkatesh",
address: "Church Street, Bangalore”,
email: "vwv@cmi.comm”,
phone: "12345566"

)

db.personal_information.deleteOne({"name":"Venkatesh

ik

Operations on MongoDB Data

Collection

db.orders.distinct("cust_id")

cust_id: "A123",
amount: 58,

status: "A"
'}.
{

cust_id: "A123",

amount: 25@,

status: "A"
i

: : ["a123", "B212"]

‘ dlstmct'

cust_id: "B212",
amount: 20@,

status: "A"

'}.

{
cust_id: "A123",
amount: 308,
status: "D"

}

orders

MongoDB Cloud Tutorial

* Visit cloud.mongodb.com, sighup and login.
* Create a new database deployment.
* Name it “cmi”. Connect to it.

VENKATESH'S ORG - 2023-03-19 > PROJECT O

Database Deployments

] [ample dataset successfully loaded. Access it in Data Explorer by clicking the Collsctions button, or with the MongoDB Shell. VIEW DATATUTORIAL x

® cmi Connect View Monitoring Browse Collections FREE SHARED

[} Enhance Your Experience (i} Connections 5.0 o In 17.5 B/s o Data Size 337.9 MB o

. Cut 214.5 B
For production throughput and [Jeli} /s

richer metrics, upgrade o a

dedicated cluster now! N

VERSION REGION CLUSTER TIER TYPE BACKUPS LINKED APP SERVICES ATLAS SEARCH

5.015 GCP / Mumbai (asia-southl) MO Sandbox (General) Replica Set - 3 nodes Inactive Nene Linked Create Index

Connect to cmi

+ Setup connection security + Choose a connection method Connect

I do not have the MongoDB Shell installed | have the MongoDB Shell installed

o Select your operating system and download the mongosh

‘ 22 windows b ‘

[& Download mongosh (1.6.0)] or [] Copy download URL

o Add <your mongosh's download directory>/bintoyour $PATH variable. Howto &

o Run your connection string in your command line
Use this connection string in your application:

mongosh "mongodb+srv://cmi.dhsaétk.mongodb.net/myFirstDatabase" --apiVersion 1 —-— i

username vvtesh

Replace myFirstDatabase with the name of the database that connections will use by default. You will be prompted
for the password for the Database User, vwtesh. When entering your password, make sure all special characters are
URL encoded.

Having trouble connecting? View our troubleshooting documentation

Open MongoDB Shell

* Follow instructions to open the mongodb shell.

sers\vvte
Enter passwor
Current Mongosh Log ID:
Connecting to:
Using MongoDB:
Using Mongosh:

‘mongodb+sry cmi.dhsa6tk.mongodb. net/

64169%9ecdedel8b375c596d5dD

(API Version 1)
For mongosh info see: https://docs.mongodb.com/mongodb-shell/

To help improwve our pro
m/legal/pri y-poli
You can opt-out by running the disableTelemetry() command.

Atlas atlas -shard-@ [primary] myFirstDatabase>»

yFirstDatabase"” --apiversion 1 --username wvvitesh

f v . mongodb . co

Connection Error

* If you see this error, your mongodb cluster is down.
Restart it from the cloud Database Deployments.

C:\Users\vvtes>mongosh "mongodb+srv://cmi.dhsa6tk.mongodb.net/" ——apiVersion 1 ——username cmi
Enter password: ***

Current Mongosh Log ID: 66004066c0dudd9+f07bd929

Connecting to:
Error: querySrv ENOTFOUND _mongodb._tcp.cmi.dhsaétk.mongodb.net

Try MongoDB Commands

 Use a DB and Create a Collection
show dbs

use <dbname>

show collections
db.createCollection(“students”)

* Manipulate the Collection

e db.students.insert({ fname:“VV”, Iname:“Rao” })

e db.students.find()
e db.students.find().count()
e db.students.remove({fname:“VV"})

* Drop the Collection
* db.students.drop()

e exit

See https://www.mongodb.com/basics/create-database

Insertion Error

* Note that “ and "~ are not same.

Atlas atlas-vt3kvy-shard-0 [primary] myFirstDatabase> db.students.find()
Atlas atlas-vt3kvy-shard-0 [primary] myFirstDatabase> db.students.insert({ fname:“VV”, lname:“Rao” })
Uncaught:

: Unexpected character '«'. (1:27)

db.students.insert({ fname:«“Vv”, lname:“Rao” })

Atlas atlas-vt3kvy-shard-0 [primary] myFirstDatabase> db.students.insert({ fname: , Lname: 1)
DeprecationWarning: Collection.insert() is deprecated. Use insertOne, insertMany, or bulkWrite.

i

acknowledged: true,
insertedIds: { : ObjectId("6600435b7eeld3387d352d8cd") }

¥
Atlas atlas-vt3kvy-shard-0 [primary] myFirstDatabase>

How will you manage the data from a form that captures personal
information (such as Name, address) in MongoDB?

Write insert and delete queries. Describe the document structure.

Columnar Storage

SSN Name Age Addr City St
101259797 SMITH 88 [899 FIRST ST JUNO AL
892375862 CHIN a7 16137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGO LL

101259797 | SMITH | 86| 899 FIRST ST|JUND|AL

BO23THEE2 | CHIN |37 [16137 MAIN ST |POMONA | CA

18370701 [HANDU |12 |42 JUME ST|CHICAGOD|IL

Block 1 Block 2 Block 3
SSN Name Age Addr City st
101259797 SMITH aa 899 FIRST ST JUNO AL
892375862 CHIN a7 16137 MAIN ST POMONA, CA
318370701 HANDU 12 42 JUNE ST CHICAGO IL

Read https://docs.aws.amazon.com/redshift/latest/dg/c columnar storage disk mem mgmnt.html

101259787 |802375862 | 318370701 | 4668248180 | 3TE568310 | 2313466875 | 317346551 | TT0336528 | 277332171 | 455124508 | 7356885647 | 38T58E6301

Block 1

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Columnar Storage

SSN Name Age Addr City st
101259797 SMITH 88 899 FIRST ST JUNO AL
892375862 CHIN 37 16137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGO IL

101259797 | 892375862 | 318370701 468248180 | 378568310 | 2313466875 | 317346551 | FT0336528 | 277332171 | 455124508 | 735885647 | 387586301

Block 1

Same datatype in a block helps in devising efficient compression
schemes. Therefore, improve storage efficiency.

Assumption: “OLTP transactions typically involve most or all of the

columns in a row for a small number of records. Data warehouse queries
commonly read only a few columns for a very large number of rows.”

Cassandra - Wide-Column Store

e A column is the basic data structure of Cassandra.

* A Column has three values, namely key or column
name, value, and a time stamp.

name : byte[] | value : byte[] | clock : clock]]

* A super column is a special column. stores a map of
sub-columns.

name : byte[] cols : map<byte][],
column=>

Column-Family DB

e Cassandra does not force individual rows to have all
the columns.

* An example of a Cassandra column family:

Row Key 1

Column 1

Column 2

Column 3

v

v

Y

Value 1

Value 2

Value 3

Row Key 2

Column 1

Value 1

Column 4

Value 4

Apache HBase Tutorial

e Start Cloudera
 Start docker desktop

e docker run --hostname=quickstart.cloudera --
privileged=true -t -i --publish-all=true -p 8888:8888 -p
8080:80 -p 50070:50070 -p 8088:8088 -p 50075:50075 -
p 8032:8032 -p 8042:8042 -p 9888:19888
cloudera/quickstart /usr/bin/docker-quickstart

e Start HBase Shell
* hbase shell

* Note

* Each value is stored as rowkey + columnfamily +
columnqualifier + datetime + value.

Apache HBase Tutorial

* Try the following commands on cloudera quickstart
console

* Creates Student table with three column families.
* create 'Student’, 'personal_data','academic_data’,'other_data’
 List all the tables
e list
* Insert a student with rowkey S101 and “John” as the name in
personal_data
* put 'Student’,'S101','personal_data:name’,'John'
e Syntax is put ‘<table name>’/rowkey’,<colfamily:colname>’’<value>’
* Insert more data
e put 'Student','S101','personal_data:address','#145, NewRoad,Chennai’
e put 'Student’,'S101','academic_data:class','Course A’
e put 'Student’,'S101','academic_data:year','second'

Apache HBase Tutorial

e See the entered data
e get 'Student’,'S101"
e scan 'Student’
 How many rows do you have?
e count 'Student’
* Clean up
e delete 'Student’,'S101','academic_data:class’

e disable 'Student'
e drop 'Student’

Apache HBase Tutorial

hbase(main):001:0> create 'Student' , 'personal_data', 'academic_data', 'other_data'
@ row(s) in 2.6160 seconds

=> Hbase::Table - Student
hbase(main):@e2:0> list
‘TABLE

Student

‘1 row(s) in ©.8230 seconds

hbase(main):@83:08> put 'Student’,'Sl1el’, 'personal_data:name’, 'John’
@ row(s) in ©.171@ seconds

hbase(main):064:0> put 'Student', 'S1e1', 'personal_data:address', '#145, NewRoad,Chenna

il
@ row(s) in ©.9180 seconds

hbase(main):065:0> put 'Student','S101','academic_data:class’', 'Course A'
@ row(s) in ©.811@ seconds

hbase(main):@ee6:@> put 'Student','S1e1', 'academic_data:year', 'second’
@ row(s) in ©.9180 seconds

hbase(main):010:8> delete 'Student’','S1@1','academic_data:class'
@ row(s) in ©.0930 seconds

hbase(main):@11:8> scan 'Student’

ROW COLUMN+CELL

slel column=academic_data:year, timestamp=1697422901964, value=seco
nd

sie1l column=personal_data:address, timestamp=1697422885588, value=#
145, NewRoad,Chennai

slel column=personal_data:name, timestamp=1697422867789, value=John

1 row(s) in ©.851@ seconds

Cassandra Keyspace

« Keyspace Is a container for a list of one or
more column families.

* A column family, in turn, Iis a container of a
collection of rows.

« Each row contains ordered columns.

K Keyspace \

/ Column Family \ [Column Family \

cqlsh

e Cassandra Query Language Shell

[hadoop@linux bin]$ cqlsh
Connected to ... Cluster at
cqlsh> select * from emp;

* Note: Cassandra does not join!

* If you need to lookup several tables, create another
column-family.

Graph DB

* Facebook, LinkedIn, Google ...have connected data.
* It is natural to store and retrieve data as graphs.

FOLLOWS _
._FOLLOWS

name: Johan name: Emil

Twitter users represented in a graph database model.

Read https://neo4dj.com/blog/why-graph-databases-are-the-future/

https://neo4j.com/blog/why-graph-databases-are-the-future/

Transactions,
Consistency and CAP
Theorem

Transaction

read(A)
. A=A-50

erte(A) transfer $50 from
read(B) account A to account B

B :=B + 50
write(B)

R

A transaction is a unit of program execution

that accesses and possibly updates various
data items.

Do You See Any Issues Here?

7

read(A)
A:=A-50

write(A) -
read(B) u
B :=B+50

write(B)

ok wnNneE

A transaction that reads
and writes to disk.

lssues

* Two main issues to deal with:

6 2% @

1. read(A) 1. read(A)
2. A:=A-50
3. write(A) - 2. A o A=30 -
— 4. read(B) u 3. write(A)
5. B:=B+50 4. read(B)
6. write(B) 5. B:=B+50
6. write(B)

Failure (hardware failure,

system crash, software concurrent execution
defect...)

Atomicity

 What happens if step 3 is executed
but not step 6?

+ Failure could be due to software or 1. read(A)
hardware 2. A:=A-50
* The system should ensure that 3. write(A)
updates of a partially executed 4. read(B)
transaction are not reflected in the
database. 5. B:=B+50
6. write(B)

CO n S | Ste n Cy Consistent State

* Respect

* Explicitly specified 1. read(A)
integrity constraints 2' A=A —50
e Implicit integrity IR

constraints Temporarily | 3., write(A)
Inconsistent -

State 4. read(B)
5. B:=B+50
6. write(B)

* e.g., sum of balances of all
accounts stays constant

Consistent State

Isolation

e T2 sees an inconsistent database if T1 and T2 are
concurrent.

Tl T2
. read(A)
.A:=A-50
3. write(A)

N

read(A), read(B), print(A+B)
4. read(B)
5.B:=B+50
6. write(B)

* |solation can be ensured trivially by running transactions
serially

 That is, one after the other.

Durability

» After step 6, the updates to the
database by the transaction

must 1. read(A)
* persist even if there are software 2. A:=A-50
or hardware failures. 3. write(A)
4. read(B)
5. B:=B+50
6. write(B)

ACID Properties

e Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

* Consistency. A transaction must bring the database from one
valid state to another, ensuring data integrity and adhering to
predefined rules and constraints

* Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

* That s, for every pair of transactions T, and T, it appears to T, that

either T, finished execution before T, started; or T, started execution
after T,flmlshed.

* Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

How do we manage ACID properties in

the world of distributed databases?

“A distributed database is a collection of multiple, logically
interrelated databases distributed over a computer network. A
distributed DBMS is then defined as the software system that
permits the management of the distributed database and
makes the distribution transparent to the users” - Ozsu and
Valduriez, Principles of Distributed Database Systems.

But, as a facebook user, | had a different

observation...

Eventual Consistency

| updated my facebook
status and asked my
friend to check it out.
But she found nothing
therel!l

Asked her to wait a bit
and check again.

Now, she finds it!

Venkatesh Vinayakarao
3 January 21 at 9:56 AM - @ v
From Nalopakhyanam... some 11st Std memories!
A W SR WA gt |
auAE sqamEt faga @At aan ua
o Like () commen t ©> Share

Eventual Consistency

* Facebook is eventually consistent.

* Why not use a strongly consistent model?

 Stores Petabytes of data.
* We have Availability vs. Consistency tradeoff.

Read https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

CAP Theorem

* Concerns while designing distributed systems:

e Consistency —all clients of a data store get responses to
requests that ‘make sense’. For example, if Client A
writes 1 and later 2 to location X, Client B cannot read 2
followed by 1.

 Availability — all operations on a data store eventually
return successfully. We say that a data store is ‘available
for, e.g. write operations.

* Partition tolerance — if the network stops delivering
messages between two sets of servers, will the system
continue to work correctly?

’

The CAP Message

If you:
e cannot limit the number of faults,

* requests can be directed to any
server, and

* insist on serving every request you

receive, Choose
Any

Then: / Twol
. . €ncy
* you cannot possibly be consistent.

Availabj|
ity

The Transaction Properties

Atomicity

Isolation

Durability

Consistency

~

J

Basically
Available

Soft-State

Eventually
Consistent

Consistent,
Available (CA)
Systems have

trouble with /

4
|

partitions ,
and typically dedl

Pick Two

Consistent, Partition-Tolerant (CP)
Systems have trouble with availability
while keeping data consistent across
partitioned nodes

with it with
replication

Available, Partition-
Tolerant (AP) Systems
achieve "eventual
consistency” through
replication and
verification

20

PACELC (pronounced “pass-elk”)

e PACELC extends the CAP theorem

* If system is partitioned (P),
* Choose between Consistency (C) and Availability (A)
* Else (E)

* In the absence of partitions, choose between latency (L) and
consistency (C).

PACELC

S\

N

Consistency
Latency

Partitioned No

System Partition

Consistency

Availability

https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

A prominent nosgl db...

Amazon DynamoDB

* NoSQL

* Fully managed database
* 99.999% availability SLA
* No maintenance, No upgrades, No patching

* With single-digit millisecond performance at any
scale

* Scale to zero! Or Scale as much as you wish.

Py S Dropbox ZOOM

Watch https://www.youtube.com/watch?v=TCnmtSY2dFM

Fully Managed

Create table

Table details info

DynamoDB is a schemaless database that requires only a table name and a primary key when you create the table.

Table name
This will be used to identify your table.

(Music

Between 3 and 255 characters, containing only letters, numbers, underscores (_), hyphens (-), and periods (.).

Partition key
The partition key is part of the table's primary key. It is a hash value that is used to retrieve items from your table and allocate data across hosts for scalability and availability.

[Artist] [String v)

1 to 255 characters and case sensitive.

Sort key - optional
You can use a sort key as the second part of a table's primary key. The sort key allows you to sort or search among all items sharing the same partition key.

(SongTitle] (String v)

1 to 255 characters and case sensitive.

Table settings
© Default settings (O Customize settings
The fastest way to create your table. You can modify these settings now or after your table has been Use these advanced features to make DynamoDB work better for your needs.
created.

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

Tables, items,

Table

g

Primary key
Partition key: PersoniD

101

102

103

LastMame

Smith

LastName

Jones

LastMame

Stephens

FirstName

Fred

FirstMame

Mary

FirstName

Howard

and attributes

Attributes

Phone

555-4321

Address

{"Street™:"123
Main” "City":"Anytown","State™:"
PCode":12345}

FavoriteColor

Blue

e Items

OH","ZI

Address

{"Street":"123
Main","City™:"London","PostalCode
":"ER3 5K&8"}

Keys

* Partition Key

* |ltems are distributed
across 10-GB storage units,
called partitions (physical
storage internal to
DynamoDB)

* Sort Key

* All data under a partition
key is sorted by the sort
key value.

Primalry Key

Products

[. \
Partition Key Sort Key

Attributes

| Lo : \
Prolguct ‘ Schema is defined per item
1 Book ID Odyssey Homer 1871
2 6 Partitas Bach
Items— i
2 Album ID: Partita
TrackID No. 1
. . Drama, .
L 3 Theid Comedy Chaplin
\
[\
Table 1 Table 2 Table N
1 1 1 | D D e]]
] S |—mem
[[] |] B
Partitions Partitions Partitions
0] | O O . O O . Om
[EE BEE ER BN |

Read/Write Data

Region region = Region.US_EAST 1;

DynamoDbClient ddb = DynamoDbClient.builder()
.region(region) .build();

putltemInTable(ddb, tableName, key, keyVal,
albumTitle, aloumTitleValue, awards, awardVal,

songTitle, songTitleVal);

ddb.close();

Query Data

aws dynamodb query \
--table-name Music \

--key-condition-expression "Artist = :name” \

--expression-attribute-values

Y"iname":{"S":"Acme Band"}}'

In-memory Acceleration with DAX

 Amazon DynamoDB Accelerator (DAX)

Amazon VPC
(Virtual Private Cloud)

W

Your
Application
e
Dax Client .
Amazon
DynamoDB

DAX

Amazon EC?2 Cluster

Instance

DynamoDB Streams

* Similar to “Triggers” in the RDBMS world

* Supports event-driven programming

* With triggers, you can build applications that react to
data modifications in DynamoDB tables.

DynamoDB: Key Features

* Configurable to achieve either eventual consistency
(by default) or strong consistency.

* Supports Transactions

Summary

Impedance
Mismatch

Multiple Tables

Object

Persan
Object
{Instance of 2
Person Class)

ASingle Person's Data

Consistent, Available, Partition-
Available (CA) Tolerant (AP) Systems
Systems have achieve "eventual
Consistent, Partition-Tolerant (CP) consistency" through
Systems have trouble with availability replication and

while keeping data consistent across verification

partitioned nodes)

trouble with
partitions

and typically dedl
with it with
replication

Schema-based
Relational Model -
maintenance
problems Scale-up

Challenges

CAP Theorem

~

Types of NoSQL datastores \

v
db.orders.distinct("cust_id")

cust_id: "A123
amount: 500
status: "A"

|Column1 | Icohlmnl l Icoumma |

redis> GET nonexisting
(nil)

redis> SET mykey "Hello"
"oK"

redis> GET mykey
"Hello"

\ redis> a redis g n

|Rowu<.y1|_>

|V-lvt1 | Ivnuoz | |Vdu03 |

| Value 1 I | Value 4 I

¢
cust_id: "A123",
amount: 250,
status: "A"

m—p ["A123", "B212"]
distinct

cust_id: "B212
amount: 200
status: "A"

Key-Valuecv
Doc-based

Columnar DB
g
g

o
g
3
3
&

Thank You

	Nosql
	Slide 392
	Slide 393
	Slide 394: A Relation as a Data Model
	Slide 395: An Entity-Relationship Design
	Slide 396: Key Challenges of Relational DB
	Slide 397: Impedance Mismatch
	Slide 398: DB Design
	Slide 399: Impedance Mismatch Problem
	Slide 400: Object Relational Mapping
	Slide 401: Scaling Out
	Slide 402: Table Joins Using MapReduce
	Slide 403: Join Pattern
	Slide 404: A New Movement was Born
	Slide 405: NoSQL DB Types
	Slide 406: Types of NoSQL DB
	Slide 407: Redis DB – Key Value Store
	Slide 408: Voldemort DB
	Slide 409: mongoDB – Document Database
	Slide 410: MongoDB vs. RDBMS
	Slide 411: Document Data Model
	Slide 412
	Slide 413: Operations on MongoDB Data
	Slide 414: MongoDB Cloud Tutorial
	Slide 415
	Slide 416: Open MongoDB Shell
	Slide 417: Connection Error
	Slide 418: Try MongoDB Commands
	Slide 419: Insertion Error
	Slide 420: Quiz
	Slide 421: Columnar Storage
	Slide 422: Columnar Storage
	Slide 423: Cassandra - Wide-Column Store
	Slide 424: Column-Family DB
	Slide 425: Apache HBase Tutorial
	Slide 426: Apache HBase Tutorial
	Slide 427: Apache HBase Tutorial
	Slide 428: Apache HBase Tutorial
	Slide 429: Cassandra Keyspace
	Slide 430: cqlsh
	Slide 431: Graph DB
	Slide 432: Transactions, Consistency and CAP Theorem
	Slide 433: Transaction
	Slide 434: Do You See Any Issues Here?
	Slide 435: Issues
	Slide 436: Atomicity
	Slide 437: Consistency
	Slide 438: Isolation
	Slide 439: Durability
	Slide 440: ACID Properties
	Slide 441
	Slide 442
	Slide 443: Eventual Consistency
	Slide 444: Eventual Consistency
	Slide 445: CAP Theorem
	Slide 446: The CAP Message
	Slide 447: The Transaction Properties
	Slide 448
	Slide 449: PACELC (pronounced “pass-elk”)
	Slide 450: PACELC
	Slide 451: A prominent nosql db…
	Slide 452: Amazon DynamoDB
	Slide 453: Fully Managed
	Slide 454: Tables, items, and attributes
	Slide 455: Keys
	Slide 456: Read/Write Data
	Slide 457: Query Data
	Slide 458: In-memory Acceleration with DAX
	Slide 459: DynamoDB Streams
	Slide 460: DynamoDB: Key Features
	Slide 461: Summary
	Slide 462: Thank You

