
I can't pass an extremely competitive
test to become a surgeon. But you give
me any operation on a heart. I can
perhaps do much better than most
people. I am like an artist. Don't expect
me to compete in an exam. Give me the
job and I will show you how good I am.

Venkatesh Vinayakarao (Vv)

NoSQL DB

Venkatesh Vinayakarao
venkateshv@cmi.ac.in

http://vvtesh.co.in

Chennai Mathematical Institute

The cost of managing traditional databases is high. Mistakes made during routine
maintenance are responsible for 80 percent of application downtime. – Dev Ittycheria,
MongoDB.

http://vvtesh.co.in/

A Relation as a Data Model

• Let the set, id = {1,2,3}

• Let the set, names = {vv, sd}

• What is id x names?

• We have a relation if we assign a
sequential id to each name.

id name

1 sd

2 vv

id name

1 sd

1 vv

2 sd

2 vv

3 sd

3 vv

… and thus we had the relational database.

An Entity-Relationship Design

Source: https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

DB Designs:
• Can get too complex!
• May become too

hard to maintain!!

https://www.slideshare.net/NarendranThangarajan/airline-reservation-system-db-design

Key Challenges of Relational DB

• Schema needs to be defined.

• Maintenance becomes harder over time.

• Impedance mismatch problem.

• Does not scale out by design.

• ACID Transactions – Consistency Vs. Availability
Trade-off.

Impedance Mismatch

DB Design

How will you design the
DB for this content?

Personal Info

Academic Profile

Employment

Impedance Mismatch Problem

One unit
Multiple Tables

Intermediate Solution: Object Relational Mapping (ORM)

Object Relational Mapping

Object

Multiple Tables

A Single Person’s Data

Person
Object

(Instance of a
Person Class)

Personal Info

Academic Profile

Employment

Hibernate Framework, Java Data Objects, … and
many other ORM frameworks emerged.

Scaling Out

Table Joins Using MapReduce

• How would you do it?

Map-side
Join

Join is performed by
the mapper.

Reduce-side
Join

Join is performed by
the reducer.

Table joins are expensive. So, new solutions
emerged. Google BigTable, Amazon Dynamo…

Join Pattern

See https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

https://www.guru99.com/introduction-to-counters-joins-in-map-reduce.html

A New Movement was Born

• We needed a
• Not only relational

• Cluster friendly

• Schemaless

 way to store and retrieve data.

• Johan Oskarsson proposed a meetup. He needed a
twitter hashtag. He used, “nosql”.

NoSQL DB Types

Types of NoSQL DB

• Key-Value Stores
• Simplest. Every item is a key-value pair.
• Examples: Riak, Voldemort, and Redis

• Document DB
• Complex data structures are represented as documents.
• Examples: MongoDB

• Wide-Column Stores
• Data stored as columns.
• Examples: Cassandra and Hbase

• Graph DB
• Examples: Neo4J and HyperGraphDB

Redis DB – Key Value Store

redis> GET nonexisting

(nil)

redis> SET mykey "Hello"

"OK"

redis> GET mykey

"Hello"

redis>

Read https://redis.io/commands/get

https://redis.io/commands/get

Voldemort DB

mongoDB – Document Database

• mongoDB = “Humongous DB”

• Open-source

• Document-based data model

• Automatic scaling

• Compromises on Availability (by default)

MongoDB vs. RDBMS

• Collection vs. table

• Document vs. row

• Field vs. column

• Schema-less

Document Data
Model

• Documents are a
natural way to
represent data.

• Here is a “Person”
object represented as a
JSON document.

• MongoDB stores this as
a BSON document
(Binary representation
of JSON).

A record in MongoDB
is a document

db.myNewCollection2.insertOne({ x: 1 })
db.orders.deleteOne({ “name" : “al" });

Commands

Read https://docs.mongodb.com/manual/core/databases-and-collections/

https://docs.mongodb.com/manual/core/databases-and-collections/

db.createCollection("personal_information")

db.personal_information.insertOne({

 name: "Venkatesh",

 address: "Church Street, Bangalore",

 email: "vv@cmi.comm",

 phone: "12345566"

})

db.personal_information.deleteOne({"name":"Venkatesh
"});

Operations on MongoDB Data

MongoDB Cloud Tutorial

• Visit cloud.mongodb.com, signup and login.

• Create a new database deployment.

• Name it “cmi”. Connect to it.

Open MongoDB Shell

• Follow instructions to open the mongodb shell.

Connection Error

• If you see this error, your mongodb cluster is down.
Restart it from the cloud Database Deployments.

Try MongoDB Commands

• Use a DB and Create a Collection
• show dbs
• use <dbname>
• show collections
• db.createCollection(“students”)

• Manipulate the Collection
• db.students.insert({ fname:“VV”, lname:“Rao” })
• db.students.find()
• db.students.find().count()
• db.students.remove({fname:“VV”})

• Drop the Collection
• db.students.drop()

• exit

See https://www.mongodb.com/basics/create-database

Insertion Error

• Note that “ and `` are not same.

Quiz

How will you manage the data from a form that captures personal
information (such as Name, address) in MongoDB?

Write insert and delete queries. Describe the document structure.

Columnar Storage

Read https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Columnar Storage

Same datatype in a block helps in devising efficient compression
schemes. Therefore, improve storage efficiency.

Assumption: “OLTP transactions typically involve most or all of the
columns in a row for a small number of records. Data warehouse queries

commonly read only a few columns for a very large number of rows.”

Cassandra - Wide-Column Store

• A column is the basic data structure of Cassandra.

• A Column has three values, namely key or column
name, value, and a time stamp.

• A super column is a special column. stores a map of
sub-columns.

Column-Family DB

• Cassandra does not force individual rows to have all
the columns.

• An example of a Cassandra column family:

Apache HBase Tutorial

• Start Cloudera
• Start docker desktop
• docker run --hostname=quickstart.cloudera --

privileged=true -t -i --publish-all=true -p 8888:8888 -p
8080:80 -p 50070:50070 -p 8088:8088 -p 50075:50075 -
p 8032:8032 -p 8042:8042 -p 9888:19888
cloudera/quickstart /usr/bin/docker-quickstart

• Start HBase Shell
• hbase shell

• Note
• Each value is stored as rowkey + columnfamily +

columnqualifier + datetime + value.

Apache HBase Tutorial

• Try the following commands on cloudera quickstart
console
• Creates Student table with three column families.

• create 'Student', 'personal_data','academic_data','other_data’

• List all the tables
• list

• Insert a student with rowkey S101 and “John” as the name in
personal_data
• put 'Student','S101','personal_data:name','John'

• Syntax is put ’<table name>’,’rowkey’,’<colfamily:colname>’,’<value>’

• Insert more data
• put 'Student','S101','personal_data:address','#145, NewRoad,Chennai'
• put 'Student','S101','academic_data:class','Course A'
• put 'Student','S101','academic_data:year','second'

Apache HBase Tutorial

• See the entered data
• get 'Student','S101'

• scan 'Student'

• How many rows do you have?
• count 'Student'

• Clean up
• delete 'Student','S101','academic_data:class'

• disable 'Student'

• drop 'Student'

Apache HBase Tutorial

Cassandra Keyspace

• Keyspace is a container for a list of one or
more column families.

• A column family, in turn, is a container of a
collection of rows.

• Each row contains ordered columns.

cqlsh

• Cassandra Query Language Shell

• Note: Cassandra does not join!

• If you need to lookup several tables, create another
column-family.

[hadoop@linux bin]$ cqlsh
Connected to … Cluster at ….
cqlsh> select * from emp;

Graph DB

• Facebook, LinkedIn, Google …have connected data.

• It is natural to store and retrieve data as graphs.

Read https://neo4j.com/blog/why-graph-databases-are-the-future/

Twitter users represented in a graph database model.

https://neo4j.com/blog/why-graph-databases-are-the-future/

Transactions,
Consistency and CAP
Theorem

Transaction

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

transfer $50 from
account A to account B

A transaction is a unit of program execution
that accesses and possibly updates various

data items.

Do You See Any Issues Here?

DB

A transaction that reads
and writes to disk.

Issues

• Two main issues to deal with:

Failure (hardware failure,
system crash, software

defect…)
concurrent execution

Atomicity

• What happens if step 3 is executed
but not step 6?

• Failure could be due to software or
hardware

• The system should ensure that
updates of a partially executed
transaction are not reflected in the
database.

Consistency

• Respect
• Explicitly specified

integrity constraints

• Implicit integrity
constraints

• e.g., sum of balances of all
accounts stays constant

Consistent State

Consistent State

Temporarily
Inconsistent

State

Isolation

• T2 sees an inconsistent database if T1 and T2 are
concurrent.

 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B)

• Isolation can be ensured trivially by running transactions
serially

• That is, one after the other.

Durability

• After step 6, the updates to the
database by the transaction
must
• persist even if there are software

or hardware failures.

ACID Properties

• Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

• Consistency. A transaction must bring the database from one
valid state to another, ensuring data integrity and adhering to
predefined rules and constraints

• Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.
• That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

• Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

How do we manage ACID properties in
the world of distributed databases?

“A distributed database is a collection of multiple, logically
interrelated databases distributed over a computer network. A
distributed DBMS is then defined as the software system that
permits the management of the distributed database and
makes the distribution transparent to the users.” - Özsu and
Valduriez, Principles of Distributed Database Systems.

But, as a facebook user, I had a different
observation…

Eventual Consistency

• I updated my facebook
status and asked my
friend to check it out.

• But she found nothing
there!!!

• Asked her to wait a bit
and check again.

• Now, she finds it!

Eventual Consistency

• Facebook is eventually consistent.

• Why not use a strongly consistent model?
• Stores Petabytes of data.

• We have Availability vs. Consistency tradeoff.

Read https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

CAP Theorem

• Concerns while designing distributed systems:
• Consistency –all clients of a data store get responses to

requests that ‘make sense’. For example, if Client A
writes 1 and later 2 to location X, Client B cannot read 2
followed by 1.

• Availability – all operations on a data store eventually
return successfully. We say that a data store is ‘available’
for, e.g. write operations.

• Partition tolerance – if the network stops delivering
messages between two sets of servers, will the system
continue to work correctly?

The CAP Message

If you:

• cannot limit the number of faults,

• requests can be directed to any
server, and

• insist on serving every request you
receive,

Then:

• you cannot possibly be consistent.

The Transaction Properties

Atomicity

Consistency

Isolation

Durability

Basically
Available

Soft-State

Eventually
Consistent

PACELC (pronounced “pass-elk”)

• PACELC extends the CAP theorem
• If system is partitioned (P),

• Choose between Consistency (C) and Availability (A)

• Else (E)
• In the absence of partitions, choose between latency (L) and

consistency (C).

PACELC

https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

Partitioned
System

Consistency

Availability

No
Partition

Latency

Consistency

A prominent nosql db…

Amazon DynamoDB

• NoSQL

• Fully managed database
• 99.999% availability SLA

• No maintenance, No upgrades, No patching

• With single-digit millisecond performance at any
scale
• Scale to zero! Or Scale as much as you wish.

Watch https://www.youtube.com/watch?v=TCnmtSY2dFM

Fully Managed

Source: https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

Tables, items, and attributes
Table

Items

Keys

• Partition Key
• Items are distributed

across 10-GB storage units,
called partitions (physical
storage internal to
DynamoDB)

• Sort Key
• All data under a partition

key is sorted by the sort
key value.

Read/Write Data

Region region = Region.US_EAST_1;

DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region) .build();

putItemInTable(ddb, tableName, key, keyVal,
albumTitle, albumTitleValue, awards, awardVal,
songTitle, songTitleVal);

ddb.close();

Query Data

In-memory Acceleration with DAX

• Amazon DynamoDB Accelerator (DAX)

DynamoDB Streams

• Similar to “Triggers” in the RDBMS world

• Supports event-driven programming
• With triggers, you can build applications that react to

data modifications in DynamoDB tables.

DynamoDB: Key Features

• Configurable to achieve either eventual consistency
(by default) or strong consistency.

• Supports Transactions

redis> GET nonexisting
(nil)
redis> SET mykey "Hello"
"OK"
redis> GET mykey
"Hello"
redis>

Types of NoSQL datastores

Summary

Schema-based
Relational Model -

maintenance
problems

Impedance
Mismatch

Scale-up
Challenges

CAP Theorem

K
ey

-V
al

u
ec

v

D
o

c-
b

as
ed

C
o

lu
m

n
ar

 D
B

G
ra

p
h

 D
B

Thank You

	Nosql
	Slide 392
	Slide 393
	Slide 394: A Relation as a Data Model
	Slide 395: An Entity-Relationship Design
	Slide 396: Key Challenges of Relational DB
	Slide 397: Impedance Mismatch
	Slide 398: DB Design
	Slide 399: Impedance Mismatch Problem
	Slide 400: Object Relational Mapping
	Slide 401: Scaling Out
	Slide 402: Table Joins Using MapReduce
	Slide 403: Join Pattern
	Slide 404: A New Movement was Born
	Slide 405: NoSQL DB Types
	Slide 406: Types of NoSQL DB
	Slide 407: Redis DB – Key Value Store
	Slide 408: Voldemort DB
	Slide 409: mongoDB – Document Database
	Slide 410: MongoDB vs. RDBMS
	Slide 411: Document Data Model
	Slide 412
	Slide 413: Operations on MongoDB Data
	Slide 414: MongoDB Cloud Tutorial
	Slide 415
	Slide 416: Open MongoDB Shell
	Slide 417: Connection Error
	Slide 418: Try MongoDB Commands
	Slide 419: Insertion Error
	Slide 420: Quiz
	Slide 421: Columnar Storage
	Slide 422: Columnar Storage
	Slide 423: Cassandra - Wide-Column Store
	Slide 424: Column-Family DB
	Slide 425: Apache HBase Tutorial
	Slide 426: Apache HBase Tutorial
	Slide 427: Apache HBase Tutorial
	Slide 428: Apache HBase Tutorial
	Slide 429: Cassandra Keyspace
	Slide 430: cqlsh
	Slide 431: Graph DB
	Slide 432: Transactions, Consistency and CAP Theorem
	Slide 433: Transaction
	Slide 434: Do You See Any Issues Here?
	Slide 435: Issues
	Slide 436: Atomicity
	Slide 437: Consistency
	Slide 438: Isolation
	Slide 439: Durability
	Slide 440: ACID Properties
	Slide 441
	Slide 442
	Slide 443: Eventual Consistency
	Slide 444: Eventual Consistency
	Slide 445: CAP Theorem
	Slide 446: The CAP Message
	Slide 447: The Transaction Properties
	Slide 448
	Slide 449: PACELC (pronounced “pass-elk”)
	Slide 450: PACELC
	Slide 451: A prominent nosql db…
	Slide 452: Amazon DynamoDB
	Slide 453: Fully Managed
	Slide 454: Tables, items, and attributes
	Slide 455: Keys
	Slide 456: Read/Write Data
	Slide 457: Query Data
	Slide 458: In-memory Acceleration with DAX
	Slide 459: DynamoDB Streams
	Slide 460: DynamoDB: Key Features
	Slide 461: Summary
	Slide 462: Thank You

