
Venkatesh Vinayakarao (Vv)

Web Application Development and Web Services

Venkatesh Vinayakarao
venkateshv@cmi.ac.in

http://vvtesh.co.in

Chennai Mathematical Institute

If You Think Math is Hard Try Web Design. – PixxelzNet.

http://vvtesh.co.in/

How to Achieve Interoperability?

Distributed
System 1

Distributed
System 2

Distributed
System 3

Interoperability Solutions

• Many Solutions
• File Transfer

• Shared DB

• Remote Procedure Calls

• Message Passing

• Middleware platforms aimed at making it more
structured and easier
• CORBA, DCOM, RMI, ...

• Web Services

Interoperability Solutions

• CORBA (1991)
• Standards-based, vendor-

neutral, and language-
agnostic.

• Communicate by message
passing over network

• Read Corba: Gone But
(Hopefully) Not Forgotten,
Queue Vol 5, No. 4.

https://www.omg.org/spec/CORBA/
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://docs.oracle.com/javase/8/docs/technotes/guides/idl/jidlExample.html

https://dl.acm.org/doi/10.1145/1255421.1388786
https://dl.acm.org/doi/10.1145/1255421.1388786
https://www.omg.org/spec/CORBA/
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://docs.oracle.com/javase/8/docs/technotes/guides/idl/jidlExample.html

More Interoperability Solutions

• Distributed Component Object Model (DCOM)
(Microsoft)

• RMI (Sun Microsystems)
• Invoke method on a remote object.

https://docs.oracle.com/javase/tutorial/rmi/overview.html

https://docs.oracle.com/javase/tutorial/rmi/overview.html

Web Services

• A “service” is a software component provided
through an (often, network-accessible) endpoint.

• Service consumer and provider use messages to
exchange invocation request and response
information in the form of self-containing
documents.

What do you understand by
“Web”?

Early Static Web

• Developed in 1990 at CERN

• NCSA Mosaic 1.0 was the first browser, released by
the National Center for Supercomputer
Applications (NCSA).

The Dynamic Web

• Httpd 1.0 web server allowed Common Gateway
Interface (CGI).

• CGI allows a browser client to request data from a
program running on a Web server.

CGI Script

Server-Side (javascript) Scripting

ASP Page

Evolution of Web and App Servers

Software as a Service (SaaS)

API Service from Oxford Dictionary
https://developer.oxforddictionaries.com/

https://od-api.oxforddictionaries.com/api/v2/entries/en-us/ubiquitous

{
"definitions": [

"present, appearing,
or found everywhere"]
}

Response in
JSON format

https://developer.oxforddictionaries.com/

Try this!

• Visit https://www.oed.com/

• Type some word in the dictionary search bar.

• Go to browser settings -> More tools -> Developer
tools.

• Open Network tab.

• Hit the search button on the search bar.

https://www.oed.com/

Try this!

• Click on the following entry
in the network tab -
https://www.oed.com/searc
h/dictionary/?scope=Entries
&q=ubiquitous

• You will see the individual
requests made by the site
and their response details.

https://www.oed.com/search/dictionary/?scope=Entries&q=ubiquitous
https://www.oed.com/search/dictionary/?scope=Entries&q=ubiquitous
https://www.oed.com/search/dictionary/?scope=Entries&q=ubiquitous

Try this!

• Copy this link address and run it in a new browser
tab -
https://www.oed.com/autocomplete/dictionary/?q
=ubiquitous

Response

[{"name":"ubiquitous","count":null,"label":"ubiquitou

s","path":null},{"name":"ubiquitously","count":null,"l

abel":"ubiquitously","path":null},{"name":"ubiquitous

ness","count":null,"label":"ubiquitousness","path":n

ull},{"name":"ubiquitous

computing","count":null,"label":"ubiquitous

computing","path":null}]

Web Services

• A Web service is a software system designed to
support interoperable machine-to-machine
interaction over a network.

https://www.w3.org/TR/ws-arch/wsa.pdf

https://www.w3.org/TR/ws-arch/wsa.pdf

REST API

• REST = Representational State Transfer
• Proposed by Roy Fielding in 2000.

Client Server

Meaning of
“ubiquitous”

present, appearing,
or found everywhere

Client Server

Request a
resource

Transfer the
representation of the
state of the resource

Resource

• Any information that can be named is a resource
• Document, image, or any other object.

• Description of the state of the resource at any
timestamp is known as resource representation
• Representation consists of data describing the resource.

• Resource methods are used to transfer the
resource state representations.
• Need not be always HTTP (GET/POST/…).

RESTful Web Services API

• Let us retrieve an existing configuration:
• http://example.com/network-app/configurations/678678

• HTTP GET /configurations/{id}

• Similarly, we can POST, PUT, and DELETE.
• HTTP POST /devices

• HTTP POST /configurations

• HTTP PUT /devices/{id}/configurations

• HTTP DELETE /devices/{id}/configurations/{id}

https://restfulapi.net/rest-api-design-tutorial-with-example/

http://example.com/network-app/configurations/678678
https://restfulapi.net/rest-api-design-tutorial-with-example/

HTTP

• HTTP Methods

• “An idempotent HTTP method is an HTTP method that
can be called many times without different outcomes.”
• POST is NOT idempotent.
• GET, PUT, DELETE are idempotent.

HTTP Method Purpose

POST Create

GET Retrieve

PUT Update

DELETE Delete

HTTP Response Codes

• 2xx
• Success
• Example: 200 = OK, 201 = Created (POST created a

resource), 202 = Accepted (if it is a long-running task)

• 4xx
• Client Error
• Example: 400 = Bad Request, 404 = Not Found.

• 5xx
• Server Error
• Example: 500 = Internal Server Error

https://restfulapi.net/http-status-codes/

https://restfulapi.net/http-status-codes/

REST in Real World

Designing REST API

• Identify the object model

• Create Model URIs

• Determine Representations

• Assign HTTP Methods

Web Services for a Banking
Application
• Designing the REST API

• Object Model
• Customer, Account

• Create Model URIs
• /customers/{customerId}
• /customers/{customerId}/accounts
• /customers/{customerId}/accounts/{accountId}

• Determine Representations
• Represent all Account information as an XML/JSON
• Represent all Customer information as XML/JSON

• Assign HTTP Methods
• Open Account = Create an Account Resource ➔ HTTP POST
• Close Account = Delete the Account ➔ HTTP DELETE

Weather Example

• See https://openweathermap.org

https://api.openweathermap.org/data/2.5/we
ather?lat={lat}&lon={lon}&appid={API key}

Implementing RESTful web
services
• Java API for RESTful web services (JAX-RS) [JSR 311]

is specification.

• Jersey is a popular JAX-RS implementation.

• JAX-RS Annotations helps in building web services
easily.

https://javaee.github.io/jsr311/

Authentication

• Basic HTTP Authentication
• User enters the credentials

• Query String Authentication
• URL has the credentials

• API Keys
• Sever generated keys are used to identify the user.

• Token-based Authentication
• oAuth method

• Most secure form of authentication out of these four.

Basic HTTP Authentication

oAuth 2.0 Architecture

https://docs.oracle.com/cd/E82085_01/160027/JOS%20Implementation%20Guide/Output/oau
th.htm

https://docs.oracle.com/cd/E82085_01/160027/JOS%20Implementation%20Guide/Output/oauth.htm
https://docs.oracle.com/cd/E82085_01/160027/JOS%20Implementation%20Guide/Output/oauth.htm

Web Services – Rate Limiting

Server

Can you think of a way to bring down a
server, if you are one of the users?

Users

Rate Limiting

• A Leaky Bucket Solution
• Queue up and service at a specific rate.

• Fixed Window Approach
• Every request is served in a fixed time slot.

• If the counter exceeds a threshold, the request is
discarded.

https://konghq.com/blog/how-to-design-a-scalable-rate-limiting-algorithm/

https://konghq.com/blog/how-to-design-a-scalable-rate-limiting-algorithm/

Scaling

• Need for scaling
• Traffic volume is different at different times

• Keeping lesser number of server instances saves cost

• Increase the server instances only when traffic is high

• Manual Scaling
• May not work in situations where we cannot predict

traffic patterns

Server Auto-Scaling

• Simple Scaling
• Increase/Decrease the server instances

• at specific times, or based on number of concurrent users, etc.
• by a specific count (say, 10% or 10 instances)

• Apply a cooldown time period to let the new servers come into action

• Target Tracking
• Attempts to keep a specific metric

• For e.g., Keep Average CPU utilization at 50%
• Increase server instances above threshold
• Decrease the server instances below threshold

• Step Scaling
• Improvement over simple scaling
• Increase in steps – Say 2 instance at a time

AWS Dynamic Scaling Policies: https://docs.aws.amazon.com/autoscaling/ec2/userguide/scale-
your-group.html

Scaling in AWS

Putting it all Together!

Private Cloud

• Many companies build and use their own private cloud.
• Each private cloud is a single-tenant server or cluster of

servers
• Total control over the resources of the physical hardware

layer.
• No risk of resource or capacity contention.
• Best suited for privacy and compliance.
• Expensive!

• Smaller companies that cannot afford a private cloud
buy infrastructure (from IaaS) on a public cloud.

• There are also corporates that believe in hybrid cloud.
• For economies of scale.

Public Cloud

• Storage and Computing services offered by third-
party providers over the public Internet, making
them available to anyone who wants to use or
purchase them.

• Often pay-as-you-go service.

• Sold on-demand.

• No management and maintenance overhead.

• May have restrictions due to security concerns (say,
can’t open certain ports).

Hybrid Cloud

• Combines a public cloud and a private cloud by
allowing data and applications to be shared
between them.

• As demand fluctuates, hybrid cloud computing
gives businesses the ability to seamlessly scale their
on-premises infrastructure up to the public cloud.
• No need to make massive capital expenditures to handle

short-term spikes.

• Companies will pay only for resources they temporarily
use.

Future of Big Data Technologies

• Research Trends
• Big Data Analysis

• Knowledge Discovery, Data Mining, …

• Big Data Storage
• Knowledge Management, Principles of Database Systems, …

• Big Data Applications
• Web Search, Ecommerce, Recommendation systems, …

• Trending among Practitioners
• Business Intelligence and Visualization

• Technology Stacks (Cloudera, Azure, AWS, GCP, …)

Summary

What Comes Next?

byte

kilobyte

megabyte

gigabyte

??

???

????

?????

Data Storage, Processing & File
Systems

Hadoop, HDFS and Map-Reduce

No Interactive Jobs
No Jobs Requiring Co-ordination
No Small Files

When not to use Hadoop?
M

ap

R
e

d
u

ce

Sh
u

ff
le

 a
n

d
 S

o
rt

Map-reduce Model

Hadoop Architecture

Big Data - Programming

Summarization

Top 10

Counting
Filtering

Apache Pig

Pig Latin
Piggy
Bank

UDF

redis> GET nonexisting
(nil)
redis> SET mykey "Hello"
"OK"
redis> GET mykey
"Hello"
redis>

Types of NoSQL datastores

NoSQL

Schema-based
Relational Model -

maintenance
problems

Impedance
Mismatch

Scale-up
Challenges

CAP Theorem

K
ey

-V
al

u
ec

v

D
o

c-
b

as
ed

C
o

lu
m

n
ar

 D
B

G
ra

p
h

 D
B

Web Services
Interoperability CORBA RMI

Evolution of Web and App Servers

Web Services with REST API
oAuth

Rate Limiting

Putting it all Together!

Thank You

	WebServices
	Slide 492
	Slide 493: How to Achieve Interoperability?
	Slide 494: Interoperability Solutions
	Slide 495: Interoperability Solutions
	Slide 496: More Interoperability Solutions
	Slide 497: Web Services
	Slide 498: Early Static Web
	Slide 499: The Dynamic Web
	Slide 500: CGI Script
	Slide 501: Server-Side (javascript) Scripting
	Slide 502: ASP Page
	Slide 503: Evolution of Web and App Servers
	Slide 504: Software as a Service (SaaS)
	Slide 505: Try this!
	Slide 506: Try this!
	Slide 507: Try this!
	Slide 508: Web Services
	Slide 509: REST API
	Slide 510: Resource
	Slide 511: RESTful Web Services API
	Slide 512: HTTP
	Slide 513: HTTP Response Codes
	Slide 514: REST in Real World
	Slide 515: Designing REST API
	Slide 516: Web Services for a Banking Application
	Slide 517: Weather Example
	Slide 518
	Slide 519
	Slide 520
	Slide 521
	Slide 522: Implementing RESTful web services
	Slide 523: Authentication
	Slide 524: Basic HTTP Authentication
	Slide 525: oAuth 2.0 Architecture
	Slide 526: Web Services – Rate Limiting
	Slide 527: Rate Limiting
	Slide 528: Scaling
	Slide 529: Server Auto-Scaling
	Slide 530: Scaling in AWS
	Slide 531: Putting it all Together!
	Slide 532: Private Cloud
	Slide 533: Public Cloud
	Slide 534: Hybrid Cloud
	Slide 535: Future of Big Data Technologies
	Slide 536: Summary
	Slide 537: What Comes Next?
	Slide 538: Data Storage, Processing & File Systems
	Slide 539: Hadoop, HDFS and Map-Reduce
	Slide 540: Big Data - Programming
	Slide 541: Apache Pig
	Slide 542: NoSQL
	Slide 543: Web Services
	Slide 544: Putting it all Together!
	Slide 545: Thank You

