
While at first glance web crawling may appear to be merely an application of
breadth-first-search, the truth is that there are many challenges ranging from
systems concerns such as managing very large data structures to theoretical
questions such as how often to revisit evolving content sources.
-Christopher Olston and Marc Najork

Venkatesh Vinayakarao (Vv)

Information Retrieval
Venkatesh Vinayakarao

Term: Aug – Sep, 2019
Chennai Mathematical Institute

https://vvtesh.sarahah.com/

An Introduction to Web
Crawling
40% of web traffic is due to web crawlers!

Web Crawler
(a.k.a. bot or spider)

Web

Downloads the
web content

Search Engines

Web Monitoring
Services

Web Archives

Content
Aggregators

… more apps …

Visit https://archive.org/about/

The Role of Content Aggregators

Source 1 Source 1 Source n…

Content
Aggregator

User

There are many content aggregation websites… Some have curated content, and some not.

Pulls content based on tag,
author, topic, etc.

Web Archives

See https://archive.org/about/
https://commoncrawl.org/

https://archive.org/about/
https://commoncrawl.org/

Web Monitoring Services

Does your web host provide 99.99% uptime? Really?

Many services are available over the web to check.

What meta-information would a crawler like to know about a page?

Importance of
the page

How frequently
does the page
get updated?

When was the
page last
updated?

Are there more
related pages
on the site?

Some of these are readily available in the page “HEAD”er, or on the sitemap.xml.

Does the site
owner want this

page “not” to
be searchable?

Sitemaps

Robots.txt

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Site owner may add a robots.txt file to request
the bots “not” to crawl certain pages.

identifies a crawler. * refers to all crawlers.

Do not crawl these pages

“searchengine” crawler may crawl everything!

How Many Bots Exist?

History

• First Generation Crawlers
• WWW Wanderer – Matthew Gray – 1993

• Written in Perl.
• Worked out of a single machine.
• Fed the index, the Wandex, thus contributing to the first search

engine of the world.

• MOMSpider
• First polite crawler (rate of requests limited per domain).
• Introduced “black list” to avoid crawling few sites.

• Several followed: RBSESpider, WebCrawler, Lycos Crawler,
Infoseek, Excite, AltaVista, and HotBot.

• Brin and Page’s Google Crawler – 1998
• Implemented with Python, asynchronous I/O, 300 downloads in

parallel, 100 pages per second.

https://www.robotstxt.org/db/momspider.html
A Robots DB is here (https://www.robotstxt.org/db.html)

https://www.robotstxt.org/db/momspider.html
https://www.robotstxt.org/db.html

History

• Second Generation Crawlers (Scalable Versions)
• Mercator - 2001

• 891 Million pages in 17 days
• Polybot

• Introduced URL-Frontier (idea of seen-URLs set)
• IBM WebFountain

• Multi-threaded processes called Ants to crawl.
• Applied Near-duplicate detection to reject webpages.
• Central controller for scheduling tasks to Ants.
• C++ and MPI (Message Passing Interface) based. Used 48 machines

to crawl.
• Several followed: UbiCrawler, IRLbot.
• Open Source Crawlers

• Heritrix
• Nutch.

A Basic Crawl Algorithm

Source: Web Crawling, Christopher Olston and Marc Najork, Foundations and Trends in Information Retrieval, Vol. 4, No. 3 (2010) 175–246

Few (10 or 100) web pages
known apriori to be high-
quality (popular)

Challenges

Scale

Can I get high value
content quickly?

Coverage Vs. Freshness

How to be fair?

Beware of adversaries

Source: Web Crawling, Christopher Olston and Marc Najork, Foundations and Trends in Information Retrieval, Vol. 4, No. 3 (2010) 175–246

Higher coverage => Higher Crawl Time => Lesser Freshness.

Fake Websites
Crawler Traps

Scaling to Web

• Caching
• Cache IP addresses to avoid repeated DNS lookups.

• Cache robots.txt files.

• Avoid Fetching Duplicate Pages
• Remember fetched URLs

• Prioritize
• For Freshness

A Scalable Crawl Architecture

WWW

DNS

Parse

Content

seen?

Dup

URL

elim

URL

set

URL Frontier

URL

filter

robots

filters

Fetch

Sec. 20.2.1

Data Structures

• A queue of URLs per web site.
• Allows throttling the access per site.

• Dequeue an URL → Download the page → Extract
URLs → Add them to queue → Iterate.

• A bloom filter to avoid revisiting same URL.

A Bloom Filter

https://llimllib.github.io/bloomfilter-tutorial

https://llimllib.github.io/bloomfilter-tutorial

Same page on the web can have
multiple URLs!

http://vvtesh.co.in
http://www.vvtesh.co.in

http://vvtesh.co.in/index.html
http://www.vvtesh.co.in/index.html
http://vvtesh.co.in/index.html?a=1

http://vvtesh.co.in/index.html?a=1&b=2
/index.html

teaching/../index.html
…

So, crawlers need to canonicalize the URLs.

You can help the crawler by identifying the canonical URL
<html>
<head>
<link rel="canonical" href="[canonical URL]">
</head>
</html>

http://vvtesh.co.in/
http://vvtesh.co.in/
http://vvtesh.co.in/index.html
http://www.vvtesh.co.in/index.html
http://vvtesh.co.in/index.html?a=1
http://vvtesh.co.in/index.html?a=1&b=2

Frontier Expansion

• Should we do
Breadth-First or
Depth-First Crawl?

How Frequently to Crawl?

Crawling the whole web every minute is not
feasible.

Metrics and Terminology

p1

A Crawl
(refers to the pages pi collected
from one crawl over the web)

is stale if it changed after we
crawled.

is fresh if it hasn’t changed
after we crawled.The page p1

Freshness =
#𝑓𝑟𝑒𝑠ℎ

#𝑐𝑟𝑎𝑤𝑙𝑒𝑑

Fast changing websites bring freshness of our
crawl down!

Can we do better?

Metrics and Terminology

p1

A Crawl
(refers to the pages pi collected
from one crawl over the web)

then its age grows until the
page is crawled again.

has age 0 till it is changed.

The page p1

Suppose p1 changes λ times per day.

Expected age of p1 after t days from last crawl is:

Age(λ,t) = 0׬
𝑡
𝑃 𝑝𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑥 𝑡 − 𝑥 𝑑𝑥

Estimating the Age

p1

A Crawl
(refers to the pages pi collected
from one crawl over the web)

Studies show that, on average, page updates
follow Poisson Distribution.

Expected age of p1 after t days from last crawl is:

Age(λ,t) = 0׬
𝑡
λe−λx 𝑡 − 𝑥 𝑑𝑥

Cho & Garcia-Molina, 2003

• Websites can generate possibly infinite URLs!
• Often setup by spammers

• E.g., Dynamically redirect to infinitely deep directory structures like
http://example.com/bar/foo/bar/foo/bar/foo/bar

/...

• Several ideas to counter this has been suggested
• E.g., “Budget Enforcement with Anti-Spam Tactics” (BEAST)

Crawler Traps

https://support.archive-it.org/hc/en-us/articles/208332943-Identify-and-avoid-crawler-traps-

http://example.com/bar/foo/bar/foo/bar/foo/bar/
https://support.archive-it.org/hc/en-us/articles/208332943-Identify-and-avoid-crawler-traps-

Batch Vs. Incremental Crawling

• Incremental Crawling
• Works with a base snapshot of the web.

• Incrementally update the snapshot with new/ modified/
removed pages.

• Works well for static web pages.

• Batch Crawling
• Easier to implement.

• Works well for dynamic web pages.

• Usually, we mix both.

Incremental Crawling, Kevin S. McCurley.

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/34403.pdf

Distributed Crawling

• Can we use cloud computing techniques to
distribute the crawling task?

• Yes! Modern search engines use several thousand
computers to crawl the web.

• Challenges
• We don’t like multiple nodes to download the same

URL, do the same DNS look-ups or parse the same HTML
pages.

• Solutions
• Hash URLs to nodes.
• Use central URL Frontier, caches and queues.

Read Cho and Garcia-Molina, Parallel Crawlers, WWW 2002.

https://dl.acm.org/doi/10.1145/511446.511464

Summary

Scale

Can I get high value
content quickly?

Coverage Vs. Freshness

How to be fair?

Beware of adversaries

An Experiment

• The Hardware
• Intel Xeon E5 1630v3 4core 3.7 GHz

• 64 GB of RAM DDR4 ECC 2133 MHz

• 2x480GB RAID 0 SSD

• Ubuntu 16.10 server

• Nutch
• 11 Million URLs fetched in ~32 hours.

• StormCrawler
• 38 Million URLs fetched in ~66 hours.

https://dzone.com/articles/the-battle-of-the-crawlers-apache-nutch-vs-stormcr

Apache Nutch

https://cwiki.apache.org/confluence/display/NUTCH/NutchTutorial

https://cwiki.apache.org/confluence/display/NUTCH/NutchTutorial

Using a Modern Crawler is Easy!

• How do we crawl with Nutch?
• Give a name to your agent. Add seed urls to a file.
• Initialize the Nutch crawl db

• Nutch inject urls/

• Generate more URLs
• Nutch generate –topN 100

• Fetch the pages for those URLs
• Nutch fetch –all

• Parse them
• Nutch parse –all

• Update the db and index in solr
• Nutch updatedb –all
• nutch solrindex <solr-url> -all

https://cwiki.apache.org/confluence/display/NUTCH/NutchTutorial

Caution: I have dropped
dedup and link inversion
steps for simplicity.

Readings/Playlists

• Berlin Buzzwords 2010 Talk on Nutch as a Web
Mining Platform The Present & The Future
• https://www.youtube.com/watch?v=fCtIHfQkUnY

• Nutch Tutorial
• https://cwiki.apache.org/confluence/display/NUTCH/Nu

tchTutorial

• Web Crawling, Christopher Olston and Marc Najork,
Foundations and Trends in Information Retrieval,
Vol. 4, No. 3 (2010) 175–246

https://www.youtube.com/watch?v=fCtIHfQkUnY
https://cwiki.apache.org/confluence/display/NUTCH/NutchTutorial

Thank You

