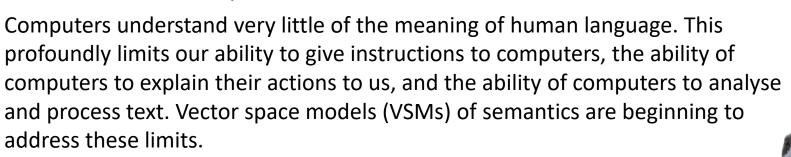
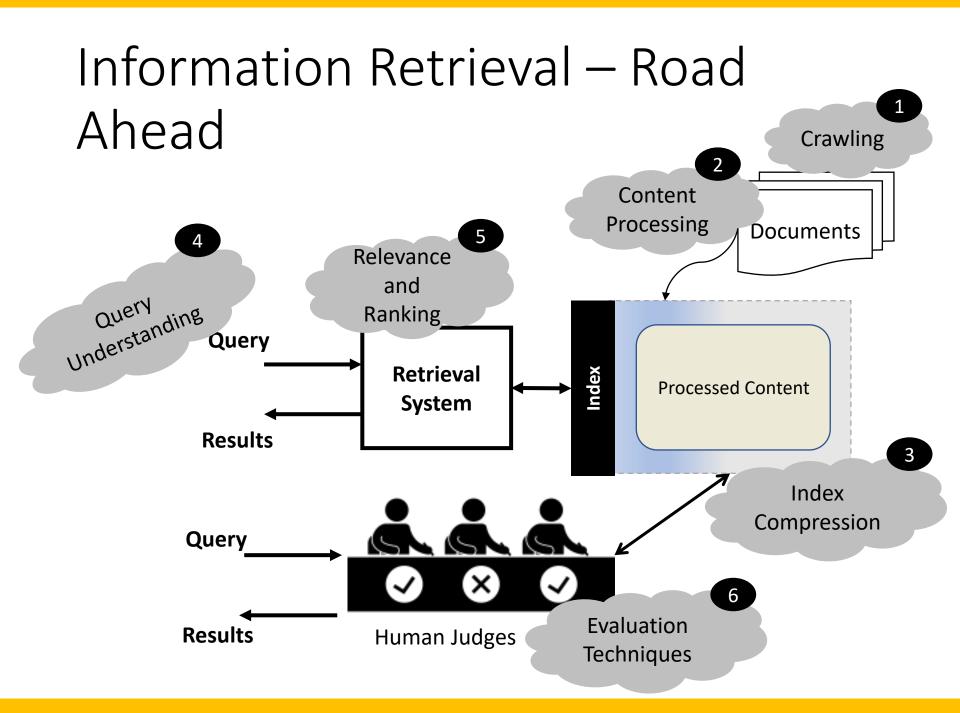
Information Retrieval

Venkatesh Vinayakarao

Term: Aug – Sep, 2019 Chennai Mathematical Institute

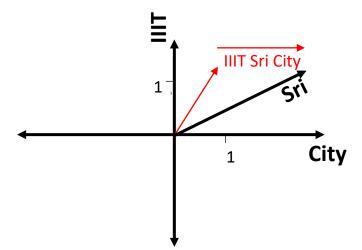


- Turney and Pantel, JAIR 2010.



Sentences are Vectors

• "IIIT Sri City" is a 3-dimensional vector



Example

Let query q = "BITS Pilani".

Let document, $d_1 =$ "BITS Pilani Goa Campus" and $d_2 =$ "IIIT Delhi".

	BITS	Pilani	Goa	Campus	ШТ	Delhi
q	1	1	0	0	0	0
d ₁	1	1	1	1	0	0
d ₂	0	0	0	0	1	1

In our VSM, q = (1,1,0,0,0,0), d_1 = (1,1,1,1,0,0) and d_2 = (0,0,0,0,1,1)

similarity(d₁, q) =
$$\frac{d_1 \cdot q}{||d_1|| \, ||q|||} = \frac{1 \cdot 1 + 1 \cdot 1}{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2 + 1^2}} = 0.71.$$

similarity(d₂, q) = $\frac{d_2 \cdot q}{||d_2|| \, ||q|||} = 0.$

Converting to Unit Vectors

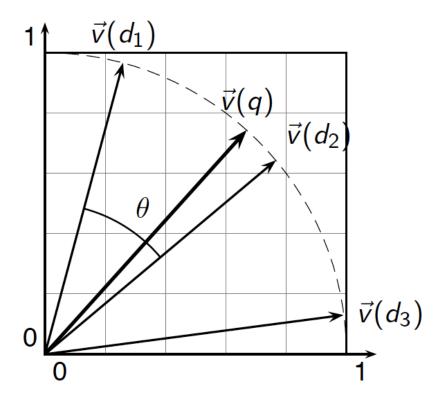
• Normalization

•
$$\frac{d_2 \cdot q}{||d_2||||q||} = \frac{d_2}{||d_2||} \times \frac{q}{||q||}$$

•
$$\frac{d_2}{||d_2||} \text{ and } \frac{q}{||q||} \text{ are unit vectors.}$$

Unit Vectors

Now, Similarity:
 sim(d1,d2) = v(d1).v(d2)



Quiz

• Can you length normalize the vector (1,0,1,2) ?

Answer: (0.41, 0, 0.41, 0.82)

Hint: Normalization Factor = $\sqrt{1^2 + 0 + 1^2 + 2^2} = \sqrt{6}$ Normalized Vector = $(1/\sqrt{6}, 0, 1/\sqrt{6}, 2/\sqrt{6})$

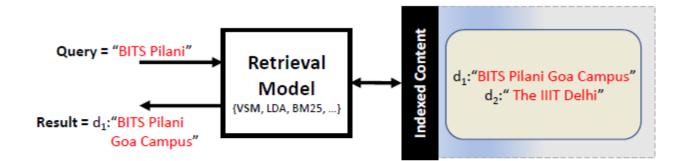
Quiz

- What is the cosine similarity between the **unit** vectors:
 - (0.996, 0.087, 0.017) and
 - (0.993, 0.120, 0)

Answer: 0.999

Hint: Simply take the dot product between the two unit vectors.

Not Every Term is Important



Let us add Term Weights

	BITS	the (* 0)	Pilani	Goa	Campus	IIIT	Delhi	
q	1	1*0=0	1	0	0	0	0	
d1	1	0 * 0 = 0	1	1	1	0	0 🔶	sim(q,d ₁) = 0.71
d ₂	0	1*0=0	0	0	0	1	1 🗕	sim(q,d ₂) = 0

Inverse Document Frequency

Indexed Content

$$idf(t,D) = \log \frac{N}{|\{d \in D: t \in d\}|}$$

where N = |D| = Total no. of documents.

$$idf("the", \{\mathbf{d_{1}, d_{2}}\}) = \log \frac{2}{2} = 0$$

 $idf("batsmen", \{\mathbf{d_{1}, d_{2}}\}) = \log \frac{2}{1} = 0.3$

But, do you see any problem? Clue... divide by zero.

d₁: "An inverse document frequency factor is incorporated which diminishes **the** weight of terms that occur very frequently in **the** document set and increases **the** weight of terms that occur rarely."

d₂: "Sachin Ramesh Tendulkar is a former Indian international cricketer and a former captain of **the** Indian national team, regarded as one of **the** greatest batsmen of all time."

Length Normalization

 $tf_{L}(t,dj) = tf(t,dj) * \log(1 + \frac{Avg.DL}{len(dj)})$ $Avg.DL = \frac{9+4}{2} = 6.5$ Query, q = "IITD" Result = ?? Result = ?? Result = ??

We have only

111

$$tf_L("IIITD", d_1) = 4 * \log(1 + \frac{6.5}{9}) = 0.94$$

 $tf_L("IIITD", d_2) = 1 * \log(1 + \frac{6.5}{4}) = 0.42$

Distinct Terms

Let
$$|\mathbf{d}_1| = |\mathbf{d}_2| = 20$$
.
|{distinct terms in \mathbf{d}_1 }| = 5, tf(
"IIITD", \mathbf{d}_1) = 4.

 $|\{\text{distinct terms in } \mathbf{d_2}\}| = 15, \text{tf}($ "|||TD", $\mathbf{d_2}$) = 4.

Which document will you prefer?

d₁ = IIITD works in IR. Venkatesh works in IIITD. In IIITD, Venkatesh works in IR. Venkatesh works. IR works. IIITD works.

d₂ = Welcome to the official page of IIITD. IIITD has four departments. IIITD has research focus. Come to IIITD. Schedule visit.

Prefer d₂: Has Less Distinct Terms

Length Regulated TF, LRTF = $tf_{L}(t, dj) = tf(t, d_{j}) *$ $log(1 + \frac{Avg.DL}{len(d_{j})})$ $tf_{L}("IIITD", d_{1}) = 4 * log(1 + \frac{20}{20}) = 1.2$ $tf_{L}("IIITD", d_{2}) = 4 * log(1 + \frac{20}{20}) = 1.2$

Relative Intra-Term TF, RITF = $tf_R(t, dj) = \frac{tf(t, dj)}{Avg.TF(d_j)}$ $tf_R("IIITD", d_1) = \frac{20}{4} = 5$ $tf_R("IIITD", d_2) = \frac{20}{1.3} = 15.4$

A Case Where RITF Fails

Let $|\mathbf{d}_1| = 20$. $|\mathbf{d}_2| = 200$. $|\{\text{distinct terms in } \mathbf{d}_1\}| = 15$, $tf(``IIITD'', \mathbf{d}_1) = 4$. $|\{\text{distinct terms in } \mathbf{d}_2\}| = 150$, $tf(``IIITD'', \mathbf{d}_2) = 4$.

Which document will you prefer?

• RITF =
$$tf_{R}(t, dj) = \frac{tf(t, dj)}{Avg.TF(dj)}$$

- In this case, $tf_R("IIITD", d_1) = tf_R("IIITD", d_2)$
- We prefer tf_L instead.

The Okapi Ranking Function

- First implemented in the Okapi Information Retrieval System at the London City University
- Many variants evolved since then
 - BM11 (Stands for Best Match)
 - BM15
 - BM25
 - BM25F

The BM25 Ranking Function

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot \left(1-b+b \cdot rac{|D|}{ ext{avgdl}}
ight)}$$

K1 and b are free variables chosen empirically. Typical values are:

$$k_1 \in [1.2, 2.0]$$
 and $b=0.75$.

VSM is expensive to be applied on all documents for a query

If we are only interested in top-k documents, how can we improve our matching algorithm?

In-exact Top-K Retrieval

- Guess the candidate set
- Apply VSM on that set

Candidate set need not contain the top scoring document

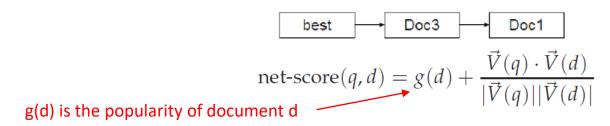
Index Elimination

Consider only those documents that have IDF > a threshold (and/or) Consider only those documents that have several query terms Use a Champions List

Pre-compute top docs for certain (popular) query terms

In-Exact Top-K Retrieval

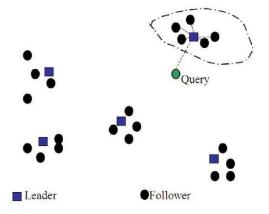
Order Postings List by Popularity



Cluster Pruning

At query time, consider only a small number of clusters.

But, how to cluster the documents?

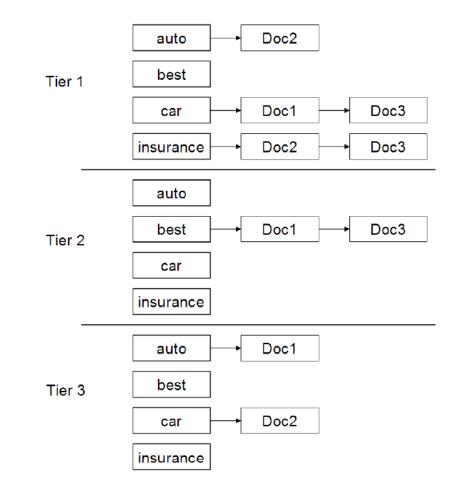


Tiered Indexes

 Extends the idea of champion lists

• ...

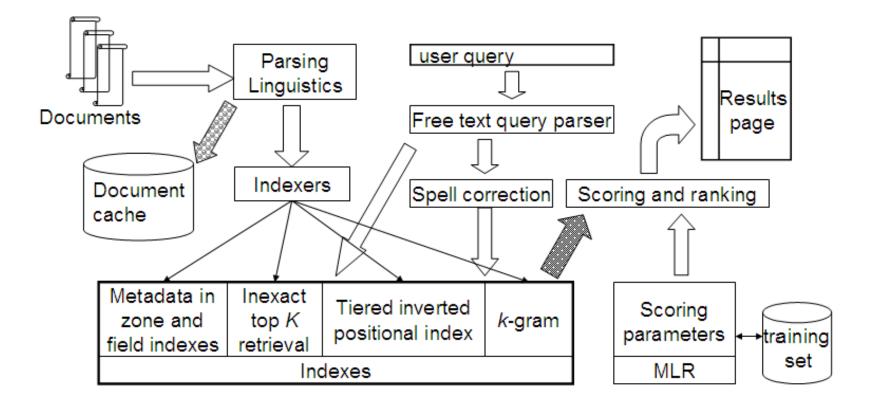
- Tiers are ordered by term frequency.
 - E.g., Tier 1 has docIDs with tf > 20
 - Tier 2 has docIDs with tf > 10



Proximity Weighting

- Ideally, query terms should occur closer to each other in the document.
 - Say w is the smallest window containing all query terms in some document d.
 - If d has the text "CMI is located in Siruseri" and if the query is "CMI Siruseri", w is 5.
- Design a scoring function that rewards smaller w (or punishes bigger w values).

An Overview of a Complete Search System



Reading

- A novel TF-IDF weighting scheme for effective ranking, Jiaul Paik, SIGIR, 2013.
- The Probabilistic Relevance Framework: BM25 and Beyond, Stephen Robertson & Hugo Zaragoza, 2009.