https://vvtesh.sarahah.com/

Information Retrieval

Venkatesh Vinayakarao

Term: Aug – Dec, 2018 Indian Institute of Information Technology, Sri City

Thou shalt not compute MRR nor ERR. Thou shalt not use MAP. – **Nobert Fuhr.**

Venkatesh Vinayakarao (Vv)

In **ad hoc** document retrieval, the system is given a short query q and the task is to produce the best ranking of documents in a corpus, according to some standard metric such as average precision (AP).

Simple Applications of BERT for Ad Hoc Document Retrieval, Yang, Zhang and Lin, University of Waterloo, 2019

Standard Test Collections for Ad Hoc Retrieval

- Cranfield Collection [1950]: Contains 1398 abstracts of journal articles, 225 queries, exhaustive judgments for all query-document pairs.
- Text Retrieval Conference (TREC) [1992]: 1.89 billion documents, relevance judgments for 450 information needs. Judgments for top-k documents.
- GOV2: 25 Million .gov web pages!
- NTCIR and CLEF: Cross language information retrieval collection has queries in one language over a collection with multiple languages.
- Reuters-RCV1, 20 Newsgroups, ...

The SIGIR Museum

Museum

Report on the first stage of an investigation onto the comparative efficiency of indexing systems

Cyril W. Cleverdon The College of Aeronautics, Cranfield, England, 1960

Evaluation

How to compare Search Engines? How good is an IR system?

- Various evaluation methods
 - Precision/Recall
 - Mean Average Precision
 - Mean Reciprocal Rank
 - If first relevant doc is at kth position, RR = 1/k.
 - NDCG
 - Non-Boolean/Graded relevance scores
 - DCG = $r_1 + r_2/log_2 + r_3/log_2 + ... r_n/log_2 n$

Precision and Recall

- An IR system retrieves the following 20 documents.
- There are 100 relevant documents in our collection.
- Hollow squares represent irrelevant documents.
- Solid squares with 'R' are relevant.

- What is Precision?
- What is Recall?

Precision and Recall

- An IR system retrieves the following 20 documents.
- There are 100 relevant documents in our collection.
- Hollow squares represent irrelevant documents.
- Solid squares with 'R' are relevant.

- What is Precision? Precision = 8/20.
- What is Recall? Recall = 8/100.

Can we do better?

Can we have one number to express quality?

A minor deviation ahead!

F-Measure

- One measure of performance that takes into account both recall and precision.
- Harmonic mean of recall and precision:

$$F = \frac{2PR}{P+R} = \frac{2}{\frac{1}{R} + \frac{1}{P}}$$

Harmonic Mean'aaa?

Arithmetic Mean

- What is the arithmetic mean of:
 - 1,2,3
 - 1,2,3,4,5
 - 1,2,3,4,5,6,7
- What is the arithmetic mean of:
 - 1...99

Answer:
$$\frac{1}{n} \sum_{n=1}^{99} n = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{99.100}{99.2} = 50$$

Arithmetic Mean

- What is the arithmetic mean of:
 - 7,8,9 ?
 - 11,13,15?
- What is the arithmetic mean of:
 - 1, 9, 10
 - 6.7
 - 1, 8, 10
 - 6.3
 - 1, 7, 10
 - 6

Geometric Mean

- What is the geometric mean of 2 and 8 ?
- Answer: $\sqrt{2.8} = \sqrt{16} = 4$. (Arithmetic Mean is $\frac{2+8}{2} = 5$.)

$$\left(\prod_{i=1}^n x_i\right)^{rac{1}{n}} = \sqrt[n]{x_1 x_2 \cdots x_n}$$

Geometric Mean

- What is the geometric mean of:
 - 7,8,9 ? AM=8, GM=7.96
 - 11,13,15? AM=13, GM=12.89
- What is the geometric mean of:
 - 1, 9, 10
 - AM=6.7, GM=4.48
 - 1, 8, 10
 - AM=6.3, GM=4.31
 - 1, 7, 10
 - AM=6, GM=4.1

Which computer will you prefer?

	Computer A	Computer B	Computer C
Program 1	1	10	20
Program 2	1000	100	20

Time taken by two programs to execute on different computers.

Which computer will you prefer?

	Computer A	Computer B	Computer C
Program 1	1	10	20
Program 2	1000	100	20

Time taken by two programs to execute on different computers.

எப்படி புதுசு புதுசா யோசிக்குறாங்க...

Which computer will you prefer?

	Computer A	Computer B	Computer C
Program 1	1	10	20
Program 2	1000	100	20

	Α	B	С		Α	B	С		Α	B	С
Prg. 1	1	10	20	Prg. 1	0.1	1	2	Prg. 1	0.05	0.5	1
Prg. 2	1	0.1	0.02	Prg. 2	10	1	0.2	Prg. 2	50	5	1
A. Mean	1	5.05	10.01	A. Mean	5.05	1	1.1	A. Mean	25.03	2.75	1
G. Mean	1	1	0.63	G. Mean	1	1	0.63	G. Mean	1.581	1.58	1

Geometric Mean gives a consistent ranking

for normalized values.

Harmonic Mean

• What is the harmonic mean of 2 and 8 ?

• Answer:
$$\frac{2}{\frac{1}{2} + \frac{1}{8}} = 3.2$$

Harmonic Mean

- What is the harmonic mean of:
 - 7,8,9 ? AM=8, GM=7.96, HM=7.92
 - 11,13,15? AM=13, GM=12.89, HM=12.79
- What is the harmonic mean of:
 - 1, 9, 10
 - AM=6.70, GM=4.48, HM=2.48
 - 1, 8, 10
 - AM=6.30, GM=4.31, HM=2.45
 - 1, 7, 10
 - AM=6.00, GM=4.10, HM=2.41

• Can you compute the average speed?

Compute AM, GM and HM of 60 and 20 AM = 40, GM = 63.25, HM = 30

Precision and Recall

Why Harmonic Mean for PR?

Precision and Recall

F1-Score A Mean for Precision and Recall

$$F_1 = \frac{2 PR}{P+R}$$

A more generalized formula:

$$F_{eta} = (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

See "The truth of the F-measure" for a detailed discussion. https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf

Compute Precision and Recall

• Case 1:

1	2	3	4	5	6	7	8	9	10
	R	R		R			R		
			R	R	R	R			

• Case 2:

R	R	R	R	R	R	R	R	

20 documents retrieved. Assume that there are 100 relevant documents.

Compute Precision and Recall

• Case 1: Precision = 8/20, Recall = 8/100

• Case 2: Precision = 8/20, Recall = 8/100

R	R	R	R	R	R	R	R	

Which IR system will you prefer?

P, R and F are set based (computed on unordered sets of documents) measures.

Can we do better for ranked documents?

Precision@k

• We cut-off results at k and compute precision.

Disadvantage: If there are only 4 relevant documents in entire collection, and if we retrieve 10 documents, max precision achievable is only 0.4.

Recall@k

• Assume that there are 100 relevant documents.

Interpolated Precision

• We cut-off results at kth relevance level.

R	R		R			R	
		R	R	R	R		

. (Interpolated)
$$P@1 = 0.5$$
 R
. (Interpolated) $P@2 = 2/3$ R R

Interpolated Average Precision = (0.5 + 0.66) / 2 = 0.58 (if we are only interested in 2 levels of relevance)

*Interpolated precision at 0 is 1!

What is the Average Precision?

• Case 1:

• Average of Precision at each relevance level.

5

- Average Precision = $\frac{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}}$
- Case 2:

• Average Precision = ?

For convenience, we refer to Interpolated Average Precision when we say AP

What is the Average Precision?

• Case 1:

- Average Precision = $\frac{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{5}$
- Case 2:

• Average Precision = 1/3

What is the Average Precision?

• Case 1:

R

• Average Precision = $\frac{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}$

R

If there were 10 relevant documents, and we retrieved only five,
 AP (at relevance level of 10) = ^{1/2}/₂ + ^{1/2}/₂ + ^{1/2}/₂ + ^{1/2}/₂ + ^{1/2}/₂ + 0 + 0 + 0 + 0 + 0)

R

R

10

R

Case 2:

 What is AP at relevance level of 4? Assume there were 6 relevant documents in our collection.

• AP =
$$\frac{1/3 + 1/3 + 1/3 + 0}{1/3 + 0}$$

Mean Average Precision

MAP computes Average Precision for all relevance levels for a set of queries.

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk})$$

Compute MAP

• Query1:

Compute MAP

• Query1:

• Compute MAP.

$$MAP = (1/2 + 1/3 + 1/3)/3$$

- Can you compute MAP if you do not know the total number of relevant results for any given query?
 - No! This is the case with web search. Judges may not know how many relevant documents exist.

How to compare two systems, if results are ranked and graded?

and we do not know the total number of relevant documents

Discounted Cumulative Gain

$$DCG_k = \sum_{r=1}^k \frac{rel_r}{\log(r+1)}$$

DCG_k = DCG at position k r = rank rel_r = graded relevance of the result at rank r

DCG Example

- Presented with a list of documents in response to a search query, an experiment participant is asked to judge the relevance of each document to the query. Each document is to be judged on a scale of 0-3 with:
 - 0 → not relevant,
 - 3 → highly relevant, and
 - 1 and 2 → "somewhere in between".

DCG Example

• Compute DCG

i	rel_i	$\log_2(i+1)$	$\frac{rel_i}{\log_2(i+1)}$
1	3	1	3
2	2	1.585	1.262
3	3	2	1.5
4	0	2.322	0
5	1	2.585	0.387
6	2	2.807	0.712

 $ext{DCG}_6 = \sum_{i=1}^6 rac{rel_i}{\log_2(i+1)} = 3 + 1.262 + 1.5 + 0 + 0.387 + 0.712 = 6.861$

Which system is better?

• 3,3,3,2,2,2 or 3,2,3,0,1,2 ?

Resu	lts from S	System 1	Result	ts from Sy	ystem 2
rol	log (i. 1)	$\frac{rel_i}{1}$	rol	log (i. 1)	$\frac{rel_i}{rel_i}$
rei	$\log_2(1+1)$	$log_{2}(i+1)$	rei	$\log_2(1+1)$	$log_{2}(i+1)$
3.00	1.00	3.00	3.00	1.00	3.00
3.00	1.58	1.89	2.00	1.58	1.26
3.00	2.00	1.50	3.00	2.00	1.50
2.00	2.32	0.86	0.00	2.32	0.00
2.00	2.58	0.77	1.00	2.58	0.39
2.00	2.81	0.71	2.00	2.81	0.71
		8.74			6.86

Which system is better?

- 3,2,3,0,1,2 or
 3,3,3,2,2,2,1,0

What if there are unequal number of documents?

- Ideal DCG at 6 is (the best value) DCG for 3,3,3,2,2,2
- Normalize DCG with Ideal DCG value.
- NDCG for System 1 = DCG/IDCG = 0.785.
- NDCG for System 2 = 1.

For a set of queries Q, we average the NDCG.

A Rich Area for Research

SIGIR 2018

Session 5C: New Metrics

 Leif Azzopardi, Paul Thomas, Nick Craswell: Measuring the Utility of Search Engine Result Pages: An Information Foraging Based Measure. 605-614
 Leif Azzopardi, Paul Thomas, Nick Craswell: Measuring the Utility of Search Engine Result Pages: An Information Foraging Based Measure. 605-614
 Fan Zhang, Ke Zhou, Yunqiu Shao, Cheng Luo, Min Zhang, Shaoping Ma: How Well do Offline and Online Evaluation Metrics Measure User Satisfaction in Web Image Search? 615-624

Enrique Amigó, Damiano Spina, Jorge Carrillo de Albornoz:
 An Axiomatic Analysis of Diversity Evaluation Metrics: Introducing the Rank-Biased Utility Metric. 625-634

SIGIR 2017

Session 1A: Evaluation 1

Thank You