https://vvtesh.sarahah.com/

Information Retrieval

Venkatesh Vinayakarao
venkateshv@cmi.ac.in

Chennai Mathematical Institute

What we find changes who we become.
-Peter Morville.

Venkatesh Vinayakarao (Vv)

A Simple Retrieval
System

Our first IR system.

Simple Retrieval Problem

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

* A collection with 5 documents having the following
contents
e d1: IIIT ALLAHABAD
e d2: IIIT DELHI
e d3: IIT GUWAHATI
e d4: [IIT KANCHIPURAM
e d5: [IIT SRICITY

* Query is
* |IIT SRI CITY

* Which document will you match and why?

The Problem

Query = “llIT Sri City”
—

_
Results = ??

Retrieval
System

»

.

d,:“INT Allahabad”
d,:“IIT Delhi”

\

)

Large Collection

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

One (bad) Approach

* First match the term IIIT.

e Filter out documents that contain this term.

* Next match the term Sri.

* Filter out documents that contain this term.

* Next match the term City.

e Filter out documents that contain this term.

Three iterations!

Quiz: Can we do better?

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

Representing Documents as A
Term-Document Incidence Matrix

=
(O]
+—
(%)
>
wn
©
>
(]
e
o+
(]
o
<@
o
£
wn

Documents
ST e | o | s | s
T 1 1 1 1 1
ALLAHABAD 1 0 0 0 0
¢ DELHI 0 1 0 0 0
2 GUWAHATI 0 0 1 0 0
KANCHIPURAM 0 0 0 1 0
SRI 0 0 0 0 1
CITY 0 0 0 0 1

Query Processing

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

Documents
I O W T - T I
T
ALLAHABAD
DELHI
GUWAHATI
KANCHIPURAM
SRI
CITY

Terms
O O O O =

1

All 1s in d5 for
IIT Sri City!

o O O O O Kr =
o O O O +r»r O =\
o O O »r O O =
o O B O O O =»

Boolean Retrieval

Match or No-Match! No ranking of results.

Boolean Retrieval Model

* We discuss a Boolean retrieval model which
assumes the following:
* Boolean queries are queries using AND, OR and NOT to
join query terms.
* Views each document as a set of words.
e Either there is a match or no-match. We do not rank the
results.

* Perhaps the simplest model to build an IR system.

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

Simple Conjunctive Queries

Query = “Brutus and
Caesar and not Calpurnia”
—

_

Results = ??

Retrieval
System

»

.

Shakespeare’s
Works

\

)

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

A Term-Document Incidence
Matrix Example

Antony
Brutus

Caesar

Terms

Calpurnia
Cleopatra
mercy

worser

Documents
Antony and Cleopatra Julius Caesar The Tempest Hamlet
1 1 0 0
1 1 0 1
1 1 0 1
0 1 0 0
1 0 0 0
1 0 1 1
1 0 1 1

“Brutus and Caesar and not Calpurnia”
What is the best way to get to the answer?

Othello

Macbeth

o = O O = O

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

The Answer

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

“Brutus and Caesar and not Calpurnia”

1 1 0 1 0 0

1 1 0 1 1 1

1 0 1 1 1 1
AND

1 0 0 1 0 0

Document 1 and 4 satisfy our query.

Disadvantages of term-document
Matrix

* To add new documents, we need to add new
columns.

* For a large collection (say Millions of documents),
* Each document has far fewer words from the dictionary.

* So, the matrix is sparse.

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

Can we do better?

Instead of handling both 1s and Os, can we only have the 1s?

Arrays Vs. Linked Lists

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

« {1,1,0,0,0,0,0,0,0,.... 10K elements} is
heagt/v 1 2 A Linked List!

« {0,0,1,0,1,0,0,.....10K elements} is
heaﬂ/v 3 S A Linked List!

The Problem

* An n-Dimensional Vector can be represented as

e an array of n elements.
 Example: (1,1,1)isint[]] A={1,1,1}; in Java.
* So, a large vector {1,1,0,0,0,0,0,0,0,.... 10K

elements} is
* an array with 10K elements where only first two
elements are 1s.

Is there a better way to represent this data?

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

Representing term-document
Data

Documents

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
4] Caesar 1 1 0 1 1 1
g Calpurnia 0 1 0 0 0 0
|q_) Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Brutq/'

H
\ 4
N
I

Linked List Idea in
Practice

Tokenization

e Task

* Chop documents into pieces.

 Throw away characters such as
punctuations.

 Remaining words are called tokens.

* Example

* Document 1

* | did enact Julius Caesar. | was killed i’ the Capitol;
Brutus killed me.

* Document 2

e So let it be with Caesar. The noble Brutus hath told
you Caesar was ambitious

caesar
I

was
killed

i

the
capitol
brutus
killed
me

SO

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar

was
ambitious

NN NOMNONNOMNNOMNNONNMNMNNMNNMNNNNRRRRRRRRRR

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

=
Q
Term docID Term doclD 2
I 1 ambitious 2 &)
S ort did . be 2 I
enact 1 ' brutus 1 Q
julius 1 brutus 2 %
caesar 1 capitol 1 o
I 1 caesar 1 Q
was 1 caesar 2 g—
killed 1 caesar 2 7
i 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 | 1
killed 1 ! 1
me 1 i 1
SO 2 It 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 SO 2
brutus 2 the 1
hath 2 the 2
you 2 you 2
caesar 2 was 1
was 2
was 2 with 2
ambitious 2

nverted Index: Dictionary &
Postings

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

Term docID dictionary
grenbitious g term doc. freq. — postings lists
* Multiple term orutus 1 ambitious [1] ~ —
brut'us 2 be | 1 — |2
entries in a single e] brue] 7 o %ﬁ
caesar 2 capito — 1]
dOCU ment are ggdesar f caesar | 2 — Nl=
i . —
merged. enact 1 did | 1 - |1
hath 1 » enact | 1 | — |1
o ! 1 hath | 1 —
°
S[.)|It. into | 1 1 ~
Dictionary and it ; e -
e e I
. ille <]
POStlngS killed 1 julius | 1 | — |1
let 2 killed | 1 | — |1
me 1 BY
noble 2 let | 1 -
SO 2 me | 1 ‘ — |1
the 1 noble | 1 ‘ — |2
the 2 1 ?
told 2 >0 =
you 2 the | 2 — ; —
was 1 told | 1 | — |2
was 2 —
with 2 you - 2
was — 1=
with | 11 — |2

The Big Picture

Documents
Indexing

Query = “IlIT Sri City” 4)
' Retrieval
s Inverted Index
| ystem
Results = ?? _)

Thank You

