https://vvtesh.sarahah.com/

Information Retrieval

Venkatesh Vinayakarao
venkateshv@cmi.ac.in

Chennai Mathematical Institute

What we find changes who we become.
-Peter Morville.

Venkatesh Vinayakarao (Vv)




Query Processing with
Inverted Index



Query processing: AND

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
(o'
9
o
£
s

* Consider processing the query:
Brutus AND Caesar
* Locate Brutus in the Dictionary;
* Retrieve its postings.
* Locate Caesar in the Dictionary;

* Retrieve its postings.
* “Merge” the two postings (intersect the document sets):

> 34 | Caesar

« o bl 45 g bl 16 b 32 5 64 b{ 128 | Brutus
12 {3 p5H{8p[13 21




Common Interview Question

* https://www.geeksforgeeks.org/intersection-of-
two-sorted-linked-lists/

=
(O}
o+
(%]
>
(Vp)
©
>
()}
=
)
(¢}
o
Q
o
£
(Vp)]

(;CC k.‘ilw()r(;ﬂﬂ ](S Custom Search “ I

A computer science portal for geeks

tHa Algo ¥ DSY Languages ¥ Interview ¥ Students ¥ GATE ¥ CS Subjects ¥ Quizzes ¥

Geeks Classes g
Quick Links for Sorting Intersection of two Sorted Linked Lists N
i ) Given two lists sorted in increasing order, create and return a new list representing the
Sorting Terminology
intersection of the two lists. The new list should be made with its own memory — the original
Stability in sorting algorithms lists should not be changed.
lirgn{;eri(tiﬁmgplexities el s For example, let the first linked list be 1->2->3->4->6 and second linked list be 2->4->6->8, then

your function should create and return a third list as 2-=4-=6.

Evtarnzl SArting


https://www.geeksforgeeks.org/intersection-of-two-sorted-linked-lists/

The Merge

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

* Walk through the two postings simultaneously. Use
two pointers.

2 >4 —+816 » 32 » 64 —~ 128 | Brutus
12 +3~5>8» 13+ 21 » 34 | Caesar

Note that the postings need to be sorted by document ID.

« If the list lengths are m and n, the merge takes
O(m + n) operations.



The Big Picture

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

* Content Processing
Bl Tarr L Mt
* Build Inverted Index
e Query Handling
R oelona-tlE

* Intersect the Posting Lists (called merging process)

»

Query = “IlIT Sri CITy< d,:” lahabad”

d,:“IlIT Delhi”

<<
Results = ??

L )

Large Collection




The Merge

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
(O]
o
9
o
£
s

* Walk through the two postings simultaneously. Use
two pointers.

24—+ 8~ 16 > 32 —~ 64 — 128 | | Brutus
1—+2—>3~+5~>8+13+ 21 » 34 | Caesar

Note that the postings need to be sorted by document ID.

« If the list lengths are x and y, the merge takes
O(x+y) operations.

Can we do better?

Inspired from multiple index idea of DBMS



Skip List

£
Q
)
(%)
>
wn
‘©
>
Q
e
-
Q
o
<2
o
£
(Tp]

 Skip lists are postings lists with skip pointers

72

Brutus—+24 8 16M 9232843

Caesar —» 1




Skip Lists

* Advantages
 Achieves sublinear list intersection time which is better

than O(m+n).
* Works better for static index. Updates are expensive.

e Useful for “AND” query.

e Disadvantages
* Needs space to store skip pointers.

* The effectiveness depends on where we place the skips.

* More skips = Shorter skip interval (and more comparisons).

* Less skips = Less extra space consumed but more linear
traversal (lesser comparison). We have a tradeoff.

£
Q
+—
(%)
>
(Vs
©
>
()
e
o+
()
o
9
o
£
s




A Variant of Skip List

£
(]
+—
(%)
>
(Vs
‘©
>
()
e
o+
()
o
<2
o
£
(Tp]

— I HIL
—p » - . - . B ML
— e | e e | D - - e I HIL
Rl s e e e R e e e e s e L
head 1 2 3 4 b G i 8 ) 10

Multiple levels of skips

Lucene implements a similar multi-level skip list



Skip Lists in Lucene

< C #@ lucene.apache.org/core/6_1_0/core/org/apache/lucene/codecs/MultiLevelSkipListWriter.html

OVERVIEW PACKAGE USE TREE DEPRECATED HELP

PREV CLASS NEXTCLASS FRAMES NO FRAMES ALL CLASSES

=
(O}
o+
(%]
>
(Vp)
©
>
()}
=
)
(¢}
o
Q
o
£
(Vp)]

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.apache.lucene.codecs

Class MultiLevelSkipListWriter

java.lang.Object
org.apache.lucene.codecs.MultiLevelSkipListWriter

public abstract class MultilLevelSkipListWriter
extends Object

This abstract class writes skip lists with multiple levels.

Example for skipInterval = 3:

c (skip level 2)

c c c (skip level 1)

X X X X X X X X X X (skip level ©)

dddddddddddddddddddddddddddddddd (posting list)
3 6 9 12 15 18 21 24 27 3e (df)

d - document
X - skip data
c - skip data with child peinter

Skip level i contains every skipInterval-th entry from skip level i-1.
Therefore the number of entries on level i is: floor(df / ((skipInterval ~ (i + 1))).



Answering Phrasal Queries

* Sometimes, we are looking for a phrase and not a

word.

Query = “llIT Sri City”

—

Results = ??

| Retrieval

System

I
[
{ Inverted Index }

 Here, what if we do not want to match “llIT Delhi”
even if “lINT” exists in “lIIT Delhi”?



One (bad) Approach

* Index all biwords
* Friends, Romans, Countrymen = Friends Romans,
Romans Countrymen
* How do you match the query IlIT Sri City, Chittoor?
 “lIT Sri” AND “Sri City” AND “City Chittoor” must exist.

* The Problem: “INIT” AND “Sri City” AND “Chittoor”
sounds like a much better query!

* Natural Language Processing techniques can help in
query formulation.



A Better Approach

e Store Positional Information

<term, number of docs containing term;
docl: positionl, position2 ... ;

doc2: positionl, position2 ... ;

etc.>



Extended Boolean Model with
Positional Index

“to” appears 993K times overall.
to, 993427:
(1,6: (7,18,33,72,86,231);« “to” appears six times in doc 1
2,5:(1,17,74,222,255); 4t positions 7, 18, ...
4, 5: (8, 16, 190, 429, 433);
5, 2: (363, 367);
7,3: (13,23,191); ... )

be, 1782309:
(1,2: (17, 25);
4,5: (17,191, 291, 430, 434);
5,3: (14,19, 101); ...)

Which document is likely to contain “to be”?

Doc 4 at positions (190, 191), (429,430) (433, 434)



Proximity Search

* |IIT /3 Chittoor

* /k means “within k words of”

* Merging postings is expensive
* Index well-known phrases such as “Taj Mahal”



Combination Schemes

* biword index and positional index ideas can be
combined.

e Use biword index or common phrases (such as Taj
Mahal).

* Avoids merging postings lists.

* Use positional index for other phrases (such as IlIT
Chittoor).



Index Types



Forward Index

o 1 2 3 4
doc# 12 |Mary| has a | little [lamb
doc £ 13 o 1 2 3 4
(old) The |wolf | ate | the |lamb
doc#13 0 A1 2 3 4 5
(new) [Today | the [wolf | ate | the [lamb |+

.-""-'-FH--" 5
. lamb "'Fd____'__ 1
Construct ™= [the | 4
Forward index  [wolf)| ~+— -
ate |~
Tioclay *-._‘_1____""'_-; 3
| @ |

Forward lndex
word|D
T g
doclD e
12 | 7 little | ——"
13 "'\ lamb| +—
lamb] =
the | ——n
SRR, = wolf | —
Compare ate "“2

loc|D




Inverted Index

Doc 1 Doc 2
I did enact Julius Caesar: I was killed So let it be with Caesar. The noble T
i’ the Capitol; Brutus killed me. hath told you Caesar was ambitious:
term docID term_ _ docID Dictionary
ih' d } Z]: bitious i term doc. freq. — postings lists
enact 1 brutus 1 ambitious | 1 — |2
julius 1 brutus 2 be |1 — |2
caesar 1 capitol 1 brutus — [1]|—|2
1 1 caesar 1 capitol [ 1 — |1
was 1 caesar 2 caesar | 2 _, 11—[2
killed 1 caesar 2 =
i 1 did 1 did | 1 — 1
the 1 enact 1 enact | 1 — 1
capitol 1 hath 1 hath | 1 — |2




Inverted Positional Index

* Query: “to, be, or; not, to. be.”
* TO, 993427
» «1:¢7, 18, 33,72, 86, 231);
. 2:41,17, 74,222, 255);
* 4:¢8, 16,190, 429, 433);
* 5:¢363,367);
e 7:¢13,23,191»;...»
« BE, 1782309:
e ¢1:<17, 25);
» 4:¢17,191, 291, 430, 434»;
e 5:¢14,19,6101»y;...»

e Document 4 is a match!



Inverted Positional Index

The old night keeper keeps the keep in the town

In the big old house in the big old gown.

The house in the town had the big old keep

Where the old night keeper never did sleep.

The night keeper keeps the keep in the night

OO || IN| =

And keeps in the da:k and sleeps in the light.

Table with 6 documents

<< index >>

Term | Freq| Postings & Positions

and |1 |(6,1)(6,6)

big 2 |(2,3)(2,8)(3,8)

dark (1 |(6,5)

did 1 [(47)

gown |1 [(2,10)

had |1 |(3,6)

house (2 |(2,5)(3,2)

in 5 [<(1,8)><(2,1)><(2,6)><(3,3)> <(5,7)> <(6,3)> <(6, 8)>

keep |3 |(1,7)(3,10) (5,6)

keeper|3  |(1,4)(4,5)(5,3)

keeps |3 (1,5) (5,4) (6,2)

light |1 |(6,10)

never (1 | (4,6)

night |3 |(1,3)(4,4)(5,2)(59)

old 4 ((1,2)(2,4)(29)(3,9)(4,3)

sleep |1 | (4,8)

sleeps [1 | (6,7)

the 6 |<(1,1)><(1,6)><(2,2)><(2,7)> <(3, 1)> <(3,4)><(3,7)>
<(4,2)> <(5, 1)><(5, 5)> <(5, 8)> <(6, 4)> <(6, 9)>

town |2 (1,10) (3,5)

where |1 [(4,1)




Permuterm index

* For HELLO, we’ve stored: helloS, elloSh,

lloShe, loShel, and oShell

hello$

ellosSh

loShe

loShel

hello

65



K-gram Index

* Enumerate all character k-grams (sequence of k

characters) occurring in a term

* Example: from “April is the cruelest month” we get the bigrams: Sa
ap prriil IS Siis sS St th he e$S Scerru ue el le es st tS Sm mo on nt

hS

* S is a special word boundary symbol, as before.

A partial snapshot of a sample 3-gram index

etr —

'H]';]';'I'H{}U'I'I—’l METRIC

= PETRIFY

-|H.]';'I'H IEVAL




Quiz

* How does the bi-gram inverted non-positional
index look like?

* Assume:
e Collection: d1: INDIA, d2: ASIA



Thank You



